
N E W M O D E L S A N D M E T H O D S

O F M AT H E M AT I C A L O P T I M I Z AT I O N

I N A I R T R A F F I C F L O W M A N A G E M E N T

david garcía heredia

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor in Mathematical Engineering

Universidad Carlos III de Madrid

advisors:
Elisenda Molina Ferragut

Antonio Alonso Ayuso

tutor:
Elisenda Molina Ferragut

January 2021

Copyright © January 2021 David García Heredia.

Licensed under the Creative Commons License version 3.0 under the terms of Attri-

bution, Non-Commercial and No-Derivatives (the “License”); you may not use this

file except in compliance with the License. You may obtain a copy of the License at

http://creativecommons.org/licenses/by-nc-nd/3.0.

This document was typeset using the typographical look-and-feel classicthesis de-

veloped by André Miede, and which is available at: https://bitbucket.org/amiede/

classicthesis/

http://creativecommons.org/licenses/by-nc-nd/3.0
https://bitbucket.org/amiede/classicthesis/
https://bitbucket.org/amiede/classicthesis/

A mi familia.

En especial, a mi madre.

Nobody, but Slydini.

– D. Vernon

A C K N O W L E D G M E N T S

As any important personal project, this thesis is the result of hours and hours of hard

work and dedication plus, and here comes the important part of the sum, the uncondi-

tional support and patient of many people.

Therefore, it would not be fair not to start thanking Elisenda and Antonio for all they

have done to make this project a reality. This includes the great advice on what ideas

to explore, possible ways to do it, what should be our goals, what books are essential

in Operations Research to learn it, the corrections of my not uncommon mistakes, the

personal advice, the financial support from the research projects for my internship or to

participate in congresses, and many, many more. For all that, thank you very much. You

can believe me when I say that, although the thesis was my responsibility as a student,

it would never have existed without you guys!

And as everything has a beginning, at this point I would like to make a special

mention to Prof. F. Javier Otamendi, from the Rey Juan Carlos University. Not only

because of the influence that his subject had on me when I chose my master’s degree

specialization, but also because he introduced me to this world of research. Thank you

for that!

I would like to thank the Universidad Carlos III de Madrid, and particularly the de-

partment of statistics, for the possibility of having studied my master’s and doctorate

there, as well as for the financial support, including research, conferences and intern-

ship. I greatly appreciate all that, including the work of all my professors during the

master’s program, from whom I have learned so much.

I am also grateful to all my colleagues in the statistics department. For one reason

or another, I always felt good around them. A special mention goes to Prof. Ignacio

Cascos, because in addition to everything I have learned from him about teaching and

statistics, he also gave me good advice when I was facing important decisions. I truly

appreciated that! Surely there are many other people of the department that I would

v

also like to mention, such as David Delgado, who still does not forgive my “betrayal”

;), or Mike Wiper (e4, best by test), but I will hold myself back for the sake of brevity.

In this part of the thesis I do not forget Prof. Manuel Laguna. Not only for the oppor-

tunity of working with him, but also for the kind treatment that he gave me when I was

overseas, miles away from home. Thanks for everything! Besides, I had the opportunity

to get to know that beautiful city called Boulder, and some wonderful people whom I

began to call roommates, but whom I now have the pleasure of calling friends.

Speaking of which! At this point I really want to thanks all my friends for the support

and warmth that I have received from them. Some of them I have known since child.

Some of them I met during my degree at the URJC. And others during my master’s

and doctorate. And although I must admit that I have not been able to be with them as

much time as I would have liked (believe me when I say that this work has taken me

many, many hours), I have always enjoyed every moment that I have spent with them. I

do not have space to mention you all guys, so I will just say that, if I were born again, I

would definitely make the same decisions that led me to meet each one of you. I really

appreciate you guys!

And since the most important part is always left to the end, now is the time to thank

my family. If without my advisors this thesis would have never existed, without my

family I would never have reached what I have reached, including starting this project.

Growing up in one family or another has a tremendous impact on anyone’s career, and

I had the fortune of having a winning ticket. That is why I want to start thanking my

parents, Félix and María del Mar, for all the support in the academic and personal side.

Without their education and dedication I would not be here, that is for sure. I also want

to thank my Aunt Yolanda, who always took care of me with unconditional support.

Thank you for everything! Also to my brother Sergio, the genius of the family, of whom

I could not be more proud. And to conclude, I would like to thank my grandparents.

Because if I can afford to be here today, it is only because they did not give up when

things were not that easy. Thank you for that.

David

This research was partially funded by projects MTM2015-63710-P and RTI2018-094269-

B-I00 (A. Alonso-Ayuso and D. García-Heredia) from the Government of Spain.

vi

C O N T E N T S P U B L I S H E D A N D P R E S E N T E D

The author of this thesis appears as a co-author in all the contributions listed below.

publications

The materials from the following sources are included in the thesis. Their inclusion is

not indicated by typographical means or references.

• García-Heredia, David; Alonso-Ayuso, Antonio; and Molina, Elisenda. (2019). “A

Combinatorial model to optimize air traffic flow management problems”. In: Com-

puters & Operations Research, 112, 104768.

– Url: https://doi.org/10.1016/j.cor.2019.104768.

– Partially included in Chapter 2.

• García-Heredia, David; Molina, Elisenda; Laguna, Manuel; and Alonso-Ayuso,

Antonio. (2020). “A solution method for the shared Resource Constrained Multi-

Shortest Path Problem”. In: UC3M Working Papers in Statistics and Econometrics.

– Url: https://e-archivo.uc3m.es/handle/10016/30793.

– Partially included in Chapters 3 and 4.

– Note: Submitted for publication.

conferences

• García-Heredia, David; Molina, Elisenda; and Alonso-Ayuso, Antonio. A new MIP

model for the Air Traffic Flow Management Problem. In 2nd European Conference

on Stochastic Optimization, September 2017, Rome (Italy).

• García-Heredia, David; Molina, Elisenda; and Alonso-Ayuso, Antonio. New math-

ematical optimization models for Air Traffic Flow Management. In 1st Spanish

Young Statisticians and Operational Researches Meeting, November 2017, Granada

(Spain).

vii

https://doi.org/10.1016/j.cor.2019.104768
https://e-archivo.uc3m.es/handle/10016/30793

• García-Heredia, David; Molina, Elisenda; and Alonso-Ayuso, Antonio. New math-

ematical optimization models for Air Traffic Flow Management. In XXXVII Con-

greso Nacional de Estadística e Investigación Operativa, May 2018, Oviedo (Spain).

• García-Heredia, David; Alonso-Ayuso, Antonio; Laguna, Manuel; and Molina,

Elisenda. A matheuristic for the Common Capacity Constrained Multi Shortest

Path Problem. In XXXVIII Congreso Nacional de Estadística e Investigación Operativa,

September 2019, Alcoi (Spain).

viii

C O N T E N T S

Abstract xv

Resumen xvii

1 introduction 1

2 air traffic flow management problem 7

2.1 Introduction . 8

2.2 Literature Review . 10

2.3 Problem Description . 13

2.4 Previous Models . 15

2.4.1 Notation . 16

2.4.2 ATFMP by nodes . 17

2.4.3 ATFMRP by nodes . 22

2.4.4 ATFMRP by arcs . 26

2.5 New Mathematical Formulation . 33

2.5.1 Cost analysis in the objective function 38

2.5.2 Model extension . 41

2.6 Alternative Formulation . 42

2.7 Graph of Conflicts . 47

3 shared resource constrained multi-shortest path problem 51

3.1 Introduction . 52

3.2 Problem description . 54

3.2.1 Notation . 54

3.2.2 Preliminaries: Shortest Path Problem and Resource Constrained

Shortest Path Problem . 55

3.2.3 Mathematical formulation . 56

3.2.4 Key features . 57

3.2.5 Application to project scheduling 60

3.3 Solution Methods . 64

3.3.1 Introduction to heuristic algorithms 64

3.3.2 Matheuristic algorithm . 66

3.3.3 Lagrangian Relaxation . 80

ix

4 computational experience 89

4.1 ATFM data sets . 89

4.1.1 Raw data transformation . 90

4.1.2 Sectors and route waypoints . 91

4.1.3 Flight plans . 92

4.1.4 4D-networks . 94

4.1.5 Capacity constraints . 95

4.1.6 Instances dimensions . 97

4.2 Computational Results . 98

4.2.1 Integer Programming Results . 98

4.2.2 Matheuristic and Lagrangian Relaxation Results 101

4.2.3 Flight Plans Modifications . 114

5 conclusions and future research 119

bibliography 125

x

L I S T O F F I G U R E S

Figure 1 Illustrative example with three airports and four air sectors. . . . 14

Figure 2 ATFMP by nodes for f = 1 in the example. 19

Figure 3 ATFMRP by nodes for Case 3 and f = 1 in the example. 23

Figure 4 ATFMRP by arcs for f = 1 in the example. 29

Figure 5 Illustration of the penalization functions. 41

Figure 6 Illustration of dynamic sector configuration. 42

Figure 7 Example of 3D flight plan. 43

Figure 8 4D-network example. 44

Figure 9 4D-network for two continued flights. 45

Figure 10 Illustrative example of the Shortest Path Problem. 55

Figure 11 Illustrative example of the Resource Constrained Shortest Path

Problem. 56

Figure 12 Illustrative example of the Shared Resource Constrained Multi-

Shortest Path Problem. 59

Figure 13 Example of a sequence of activities for a project. 62

Figure 14 Extended network for the project in Figure 13. 63

Figure 15 Illustrative example of solving the SRC-MSPP with the algorithm

(part I). 69

Figure 16 Illustrative example of solving the SRC-MSPP with the algorithm

(part II). 75

Figure 17 Example of sectors and waypoints. 91

Figure 18 Capacity requirements per time period for the most demanded

sectors on January 16, 2019. 93

Figure 19 Effect of the pool size for instances of size 30%. 103

Figure 20 Results of the algorithm for instances of size 65% that exact meth-

ods could also solve. 104

Figure 21 Results using a random cost structure. 105

Figure 22 Deviation from Lagrangian lower bounds. 108

xi

Figure 23 Percentage of solution time in each phase of the proposed solu-

tion procedure. 110

Figure 24 Improvement achieved after each phase of the proposed procedure.111

xii

L I S T O F TA B L E S

Table 1 Travel times for f = 1 in the example. 19

Table 2 Dimensions of the instances in our test set. 97

Table 3 Gurobi results for instances of size 30%. 99

Table 4 Gurobi results for instances of size 65%. 100

Table 5 Parameters values in experimentation. 102

Table 6 Subset of instances solved only by the algorithm. 109

Table 7 Algorithm results for instances of size 30% when using a pool of

200 solutions. 113

Table 8 Algorithm results for instances of size 65% when using a pool of

300 solutions. 114

Table 9 Flight modifications in the solution of the algorithm for instances

of size 30%. 116

Table 10 Flight modifications in the solution of the algorithm for instances

of size 65%. 117

Table 11 Flight modifications in the solution of the algorithm for instances

of size 100%. 118

xiii

A B S T R A C T

In this thesis we address the problem of Air Traffic Flow Management (ATFM). In brief,

this problem consists of finding optimal schedules and routes for a set of flights in

such a way that, when the flight plans are executed, no region of the airspace has more

aircraft flying over it than allowed by security restrictions. Likewise, no airport should

be assigned more departures or arrivals than it can handle.

In the thesis, continuing a research line originated some decades ago, we cope with

this problem using mathematical optimization. The thesis content is organized as fol-

lows.

In Chapter 2 we give a detailed description of the ATFM problem and review some

of the most recent works that also employ mathematical programming to tackle the

problem. The chapter also contains our modeling proposals for the ATFM problem.

These consist of two new and equivalent 0-1 mathematical programming formulations.

The formulations are shown to be an easy way to model different complex situations

arising in practice, and permit to solve some limitations of the state-of-the-art models.

The chapter concludes presenting a novel methodology to detect, beforehand, routes

that will be part of the optimal solution.

In Chapter 3 we generalize some of the results obtained in Chapter 2. Concretely, we

introduce a family of shortest path problems that, to the best of our knowledge, has

not been previously investigated: the Shared Resource Constrained Multi-Shortest Path

Problem. In the chapter we show how to use this family of shortest path problems to

solve some type of project scheduling problems. This way, the results obtained in the

previous chapter for the ATFM problem are extended to a broader family of scheduling

problems. In Chapter 3 we also discuss two different solution methods for the family of

shortest path problems presented. The first method consists of a matheuristic algorithm,

while the second one is based on two Lagrangian Relaxations of the problem.

Chapter 4 contains an extensive computational experience to validate the results pre-

sented in the previous chapters. Moreover, the chapter includes the creation of ATFM

instances which have been released for free disposal.

xv

Finally, in Chapter 5 we summarize the main conclusions and contributions accom-

plished in the thesis. Future lines of research that this work opens are also discussed

there.

xvi

R E S U M E N

En esta tesis tratamos el problema de la Gestión de Flujo del Tráfico Aéreo (ATFM).

De manera breve, este problema consiste en encontrar una planificación temporal y de

rutas óptima para un conjunto de vuelos de manera que, cuando se ejecuten los planes

de vuelo, ninguna región del espacio aéreo tenga más aeronaves volando sobre ella

que las permitidas por las restricciones de seguridad. Asimismo, no se debe asignar a

ningún aeropuerto más salidas o llegadas de las que pueda manejar.

En la tesis, continuando una línea de investigación originada hace algunas décadas

atrás, abordamos este problema mediante optimización matemática. El contenido de la

tesis está organizado de la siguiente manera.

En el capítulo 2 damos una descripción detallada del problema del ATFM y revisamos

algunos de los trabajos más recientes que también emplean optimización matemática

para abordar el problema. El capítulo también contiene nuestras propuestas de mod-

elización para el problema del ATFM. Estas consisten en dos nuevas y equivalentes for-

mulaciones 0-1 de optimización matemática. En el capítulo se muestra como dichas for-

mulaciones permiten modelar de manera sencilla diferentes situaciones complejas que

surgen en la práctica, y cómo permiten resolver algunas limitaciones de los modelos que

conforman el estado del arte. El capítulo concluye presentado una nueva metodología

para detectar, de antemano, rutas que formarán parte de la solución óptima.

En el capítulo 3 generalizamos algunos de los resultados obtenidos en el capítulo

2. Concretamente, introducimos una familia de problemas de camino mínimo que,

hasta nuestro entender, no ha sido investigada previamente: el problema de múltiples

caminos mínimos con recursos compartidos y restringidos. En el capítulo mostramos

cómo usar esta familia de problemas de camino mínimo para resolver algunos prob-

lemas de planificación de proyectos. De esta manera, los resultados obtenidos en el

capítulo anterior para el problema del ATFM se extienden a una familia más amplia

de problemas de planificación. En el capítulo 3 también presentamos dos métodos de

resolución diferentes para la familia de problemas de camino mínimo presentada. El

primer método consiste en un algoritmo matheurístico, mientras que el segundo se

basa en dos Relajaciones Lagrangianas del problema.

xvii

El capítulo 4 contiene una extensa experiencia computacional para validar los resulta-

dos presentados en los capítulos anteriores. Además, el capítulo incluye la creación de

instancias para el problema del ATFM que han sido liberadas para su libre disposición.

Finalmente, en el capítulo 5 resumimos las principales conclusiones y contribuciones

realizadas en la tesis. También se discuten las futuras líneas de investigación que este

trabajo abre.

xviii

1
I N T R O D U C T I O N

One of the challenges that the flight industry is currently facing is air traffic saturation.

In short, a saturation of air traffic occurs when the number of flights scheduled to fly

a concrete region of the airspace or airport surpasses the maximum quantity allowed

by security restrictions. This situation mainly arises because of the current high-traffic

demand, and short-term factors like weather, which negatively affect flying conditions.

The current practice to tackle this problem is to modify some flight plans a few hours

in advance to their execution. That way, flights can proceed at the expense of some of

them having some delay at the departure/landing or having to fly a longer route. These

modifications are included in what is denoted as Air Traffic Flow Management (ATFM)

and are proposed by the operator of the ATFM system (central decision-maker).

As air traffic involves millions of flights along one year, the cost associated with this

problem reaches billions, making crucial how decisions are made to tackle it. In this

respect, this thesis, continuing a research line originated some decades ago, addresses

the ATFM problem from a mathematical optimization perspective. The basic question

to answer, which becomes the cornerstone around which the mathematical model is

built, is: How to reschedule flights minimizing costs, so capacity limits in airports and

the airspace are respected at all times?

Attempting to answer this question is what motivated the two objectives with which

this thesis started:

1

2 introduction

1. Contributing with an Integer Programming (IP) formulation that solved some

limitations of the current state of the art for the decisions involved at intermediate

points of the flight route.

2. Proposing solution methods that allow tackling ATFM instances of the size found

in practice in acceptable computational times for the industry.

Working on these objectives led us to incorporate two new ones:

3. Extending the results obtained for the ATFM problem to a broader family of

scheduling problems. Particularly, to tackle some type of project scheduling prob-

lems.

4. Creating a collection of ATFM instances using publicly available sources that con-

tributed to establishing a benchmark data set. That way, other authors can easily

test their proposals and reproduce others’ work.

In the thesis, the first objective is tackled in Chapter 2. We start this chapter intro-

ducing the reader to the problem of air traffic saturation, its consequences and the

mechanisms that exist to deal with it. The chapter also contains a review of the most re-

cent works that cope with the ATFM problem from a mathematical optimization point

of view. The works closer to the approach developed in this thesis are analyzed and

discussed in more detail. Concretely, those of Bertsimas and Patterson [16]; Bertsimas,

Lulli, and Odoni [20]; and Agustín, Alonso-Ayuso, Escudero, and Pizarro [4].

After that introduction, in Chapter 2 we present our modeling proposals for the

ATFM problem: two new and equivalent 0-1 mathematical programming formulations.

The first formulation is obtained by modifying the variables’ definition employed in

Agustín et al. [4]. In that work, the authors formulate each flight route as a sequence

of arcs and use the following binary variables: xtf ,m,n. Variable xtf ,m,n is equal to one

if, in the solution for flight f , arc (m,n) becomes part of the route (space information),

and geographical point/node n has been reached by time t (time information). Note

that by time means at time t or earlier, making of the variable a step variable. In our

proposal, we define variables so they also include time information about geographi-

cal point/node m, and they are formulated as impulse variables (at time instead of by

time). Concretely, our variables are of the form: zt1,t2f ,m,n. These two modifications in the

variables lead to: 1) A better modeling of the flight routes, which results into solutions

with less abrupt modifications with respect to the original flight plans, 2) The possi-

introduction 3

bility of including non-linear cost while keeping the model linear, and 3) Most of the

constraints defining facets of the polytope.

The second IP formulation exploits the latter condition to formulate the problem not

as a general combinatorial one, but as a shortest path problem in multiple networks

with limited shared resources. In this second formulation, each network is associated

with an aircraft and its potential schedule modifications. Networks have the form of

time-expanded or 4D-networks. That is, the nodes of the networks combine space (geo-

graphical point) and time information (time at which the point is reached). The shortest

path structure of the second formulation enlarges the range of solving strategies, which

facilitates to address the second objective of the thesis in the next chapter. Chapter 2 con-

cludes with a novel methodology based on a graph of conflicts to detect, beforehand,

routes that will be part of the optimal solution.

In Chapter 3 we tackle the second and third objective listed for the thesis. In the chap-

ter, generalizing some of the results obtained in Chapter 2, we start introducing a new

family of shortest path problems that, to the best of our knowledge, has not been pre-

viously investigated in literature. The goal in this problem is to find, for each network

within a collection, a path between two given nodes that minimizes the total cost (the

sum of costs of the arcs forming the paths), while not exceeding the limits of a set of

shared resources. We have denoted this problem as the Shared Resource Constrained

Multi-Shortest Path Problem (SRC-MSPP). The mathematical formulation of the SRC-

MSPP consists of the classic flow conservation constraints for each network, and a col-

lection of capacity constraints that limit the resource consumption. As discussed in the

chapter, the SRC-MSPP resembles the Resource Constrained Shortest Path Problem (RC-

SPP), but important differences exist between both, e. g., the structure of the solutions

or that the RCSPP involves only one network, while the SRC-MSPP multiple of them

with arcs from different networks accessing the same resources.

In the chapter we show how to use the SRC-MSPP to solve some types of project

scheduling problems. The goal in these problems is to schedule the activities conform-

ing a project is such a way that resource limits, as well as precedence relationships

between activities, are respected. The type of scheduling problems that we consider

consist of multiple projects with: 1) their activities sequenced in serial, and 2) simul-

taneously incorporating multiple features such as processing speeds of the activities,

lag times, alternative sequences of activities, etc. Note that these features are usually

studied in isolation (i. e., not simultaneously) in the project scheduling literature.

4 introduction

In Chapter 3 we also present two different solution methods for the SRC-MSPP. The

first method is a matheuristic algorithm designed to take advantage of the modern

computer architecture with multiple cores. The algorithm consists of three phases: 1)

Generation of feasible solutions, 2) Combination of solutions, and 3) Solution improve-

ment. In the first phase, the procedure to generate feasible solutions is built around

the idea of penalizing the usage of arcs causing resource infeasibility for a given so-

lution, and recomputing the shortest paths. The procedure is repeated until finding a

feasible solution or reaching a maximum number of iterations. In the second phase, the

solutions obtained in the previous phase are combined by means of an IP solver. The

combination is made paying attention to the arcs of the networks, which introduces

some neat properties as detailed in the chapter. The last phase of the algorithm tries

to improve the solution obtained in the second phase by fixing a large proportion of

it and exploring the resulting subregion of the solution space. The exploration is also

done using an IP solver.

Respect to the second solution method studied, this is based on two Lagrangian

Relaxations of the problem. The first relaxation is obtained after dualizing the capacity

constraints limiting the resource consumption. This makes that, for a fixed vector of

Lagrangian multipliers, just a collection of shortest path problems has to be solved.

The second relaxation is obtained after dualizing a copy of the decision variables. This

allows splitting the problem into two: One consisting of a collection of shortest path

problems, and the other consisting of multiple multidimensional knapsack problems.

In either case, the resulting relaxations allow to compute lower bounds for the problem

and assess the quality of solutions obtained by the algorithm. The strength of these

bounds is established using some theoretical results in optimization literature.

All the work developed in the thesis is empirically validated in Chapter 4, where a

series of computational experiments are conducted. For the experiments, we created

(last objective of the thesis) a group of ATFM instances using publicly available sources.

The instances, which comprise different sizes and difficulties, have been released for

free disposal to permit other authors to easily test their proposals and reproduce others’

work. Respect to the goals with the experiments, these include: Obtaining solutions

for the problem using IP solvers, studying the performance of the solution methods

proposed analyzing their insights, and validating the flight plans obtained with the

formulations presented.

introduction 5

Finally, in Chapter 5 we close the thesis summarizing the main conclusions and con-

tributions accomplished, as well as exposing the future lines of research that this work

opens.

2
A I R T R A F F I C F L O W M A N A G E M E N T P R O B L E M

This chapter introduces and motivates the core problem of this thesis: The problem

of air traffic saturation and how to deal with it at a tactical decision level by using

mathematical optimization. A review of how the problem has been addressed so far in

optimization literature is also presented. The review includes a more extensive discus-

sion of those works in which this thesis is inspired. Their evolution and characteristics

are compared, so the benefits of the proposal we present later on this chapter can be

better assessed.

Respect to the latter, we introduce two new and equivalent 0-1 mathematical formula-

tions for the Air Traffic Flow Management Rerouting Problem. The second one, derived

from the former, is based on 4D-networks, which allows us to consider the problem not

as a general combinatorial one, but as a shortest path problem in multiple networks

with limited shared resources. This fact introduces several neat features, enlarges the

range of solving strategies and motivates future chapters of the thesis. Among the deci-

sions considered in the models are ground and air delays, changes in the speed of the

aircraft and alternative routes. The proposed models, in comparison with the current

state of the art, are shown to be an easy way to model different real complex situations

(e. g., a more realistic representation of costs and decisions involved, as well as dynamic

sector configuration). Finally, a novel methodology based on a graph of conflicts to de-

tect, beforehand, routes that will be part of the optimal solution, is proposed. All these

7

8 air traffic flow management problem

methodological contributions have been published in García-Heredia, Alonso-Ayuso,

and Molina [53].

2.1 introduction

According to the International Air Transport Association [79, 80], different regions of

the world, such as Europe or the US, are facing the problem of air traffic saturation, i. e.,

the number of scheduled flights is sometimes larger than the capacity of the airspace

and/or the airports. This gap between capacity and demand mainly arises because of

two reasons [44]: 1) A high traffic demand, and 2) Short-term factors like weather, which

negatively affect airspace capacities.

To ensure that scheduled flights can proceed while security (capacity) restrictions are

met at all time, some changes such as delays or alternative routes have to be proposed to

the initial flight plan of some aircraft merely a few hours in advance (tactical decisions).

For the case of Europe, the magnitude, consequences and trend of air traffic saturation

are exposed in the following figures [45–47, 78]:

1. An average of 30,000 flights per day was recorded in 2018.

2. The current forecast is that air traffic keeps growing: From 11 million flights in

2018 to 16.2 million in 2040. Under this scenario, it is estimated that 1.5 million

flights (accounting for 8% of the demand) will not be accommodated in 2040,

meaning that 160 million passengers will not be able to fly.

3. In 2018, there was an average departure delay of 14.7 minutes per flight, a 17%

more than in 2017.

4. The number of flights arriving within 15 minutes of their scheduled time de-

creased to 75.7% in 2018, a 3.9% less respect to 2017.

5. In 2018, while air traffic increased by 3.8% over 2017, en-route delays more than

doubled (104%), going from 0.88 to 1.74 minutes per flight. The main two causes

of these delays were attributed to capacity (37.4%) and weather (25.4%) factors.

6. Every year, there is an economic cost of billions of euros due to these problems.

For example, in 2012 a cost of e5.2 billion was reported.

2.1 introduction 9

To mitigate these problems, Air Traffic Management (ATM) is currently organized on

three decision levels: Strategic, tactical and operational [44]. The strategic level involves

the scheduling of flights that will take place in a few months’ time. The goal is to

maximize the available capacity in order to cope with the projected demand. The ATM

part in charge of this is called Airspace Management. The tactical decision level, which

comprises the scope of this thesis, encompasses measures taken hours (up to one day)

prior to the flight plan execution. During this phase, the traffic demand for the day is

analyzed and compared to the predicted available capacity. The initial plan, developed

during the strategic phase, is adjusted accordingly, resulting in the Air Traffic Daily

Plan. The goal of this plan is to guarantee a safe, orderly, and expeditious flow of traffic

while minimizing the impact of the decisions made. The ATM part in charge of this

level is referred to as Air Traffic Flow Management (ATFM). Finally, the operational

level consists of the decisions made during the flight plan execution. Decisions at this

level are made by air traffic controllers and are mainly focused on: 1) Guaranteeing that

the plans developed in the previous phases are fulfilled, making modifications if any

disruption occurs, and 2) Collision avoidance, that is, ensuring a minimum separation

between aircraft during the flight plan. The ATM part in charge of this level is called

Air Traffic Control.

In Europe, for example, ATM is the responsibility of EUROCONTROL (European

Organization for the Safety of Air Navigation), which plays the role of central network

manager. Particularly, the Network Manager Operations Centre is in charge of ATFM

operations.

The relevance of ATM in reducing air traffic congestion is such that, since early 2000,

large-scale projects have been developed to enhance it. For example, in 2004, the Euro-

pean Commission launched the Single European Sky (SES), an initiative to improve the

way Europe’s airspace is managed. Its purpose is to reform the European ATM so as to

ensure that future traffic demand can be (safely) met while reducing costs and improv-

ing environmental performance. Similarly, in 2007, the Federal Aviation Administration

(FAA) started in the US the Next Generation Air Transportation System (NextGen), a

collection of initiatives aiming to transform the US National Airspace System (NAS) to

increase safety and efficiency.

10 air traffic flow management problem

2.2 literature review

During the last decades, ATM problems have attracted a lot of attention from academic

research. Not only because of its relevance to the industry, but also because of its com-

plexity: the problem involves thousands of flights, multiple decisions to be made and

high interaction between them, leading to propagation effects in the underlying net-

work. All this has motivated researches to address the problem from a mathematical

optimization perspective.

As previously mentioned, this thesis copes with the problem at its tactical decision

level (ATFM). A literature review on the topic until 2010 can be found in Agustín,

Alonso-Ayuso, Escudero, and Pizarro [3]. There it is exposed the evolution of this prob-

lem in the literature over the last years. From the Single-Airport Ground-Holding Prob-

lem (SAGHP), where the goal is to coordinate departures and arrivals for one single air-

port; to the most modern version: the Air Traffic Flow Management Problem (ATFMP),

where the airspace and multiple airports are considered at the same time.

Among the works prior to 2010, we highlight those of Bertsimas and Patterson [16]

and Lulli and Odoni [97]. The former is one of the most influential papers that has been

published about ATFM. The 0-1 mathematical optimization model proposed in that

paper, based on the so-called step variables, considers: 1) Capacity limits in the airspace

and airports, 2) Continued flights performed by the same aircraft, and 3) Decisions

about assigning ground and air delays at a minimum cost. The proposed formulation

is so tight that most of the time it produces an integer solution when the problem

is relaxed. For their part, Lulli and Odoni [97], propose a model that obtains a fair

distribution of the delays among the different airline companies, ensuring that not all

of the delays are transferred to only one company or one type of flight.

Since 2010, several new proposals have appeared in literature. In Bertsimas, Lulli, and

Odoni [20], the authors extend the Bertsimas and Patterson [16] model by considering

the usage of alternative routes. These modifications result in the so-called Air Traffic

Flow Management Rerouting Problem (ATFMRP). Likewise, Agustín, Alonso-Ayuso,

Escudero, and Pizarro [4] also extend the Bertsimas and Patterson [16] model, but, con-

trary to Bertsimas et al. [20], their variables are formulated based on the flight network

arcs instead of the nodes. This model provides an improvement with respect to the pre-

vious ones: besides rerouting and air delays, increases in the aircraft’s speed, as well as

flight cancellations, are explicitly formulated and penalized. The computational experi-

2.2 literature review 11

ence presented shows that the majority of the problems can be solved in the root of the

Branch and Bound tree within a few minutes.

Balakrishnan and Chandran [11] formulate a model considering the same possible

flight modifications that Agustín et al. [4], but using a different variable definition. In

particular, each decision variable corresponds to the usage (or not) of a candidate time-

space flight trajectory. This considerably reduces the number of constraints in the prob-

lem, but at the expense of exponentially increasing the number of variables. Because of

this, the authors solve the problem through column generation in combination with a

variable rounding heuristic to generate integer solutions.

Ozgur and Cavcar [103] develop a model that, instead of considering airspace capac-

ities as the previous ones, it directly focuses on aircraft separation (operational level-

wise). This results in a difficult-to-solve model where simplifications such as no flight

connections or changes of speed are assumed, making that the only decisions consid-

ered are about ground holding time.

In Jovanović, Tošić, Čangalović, and Stanojević [83], opposite to the previous works

where the models were formulated from a centralized point of view (the ATFM net-

work manager is the decision-maker), the authors propose a model for a collaborative-

decision-making (CDM) process between airlines and the network manager. Concretely,

the authors formulate a bi-level optimization model that establishes tolls for the usage

of each air sector (disjoint regions in which the airspace is divided), so in the end, air-

lines are prone to choose those routes which are optimal from the network manager

perspective. Note that this idea of CDM in ATFM is starting to being studied by some

authors, but it is still far from being the main line of research nowadays.

Akgunduz, Jaumard, and Moeini [8] propose a model that tries to combine tactical

and operational decision levels by incorporating collision avoidance constraints. The re-

sulting model is extremely complicated, even without considering all the complexities

at the operational level, so only small instances can be solved. A remarkable character-

istic of their proposal is that it formulates the fuel-consumption-rate as a function of

speed (which is not constant).

Ivanov, Netjasov, Jovanović, Starita, and Strauss [81] use ground holding to minimize

the effect of propagated delays and improve airport slot adherence, i. e., they choose,

among the set of optimal solutions, that which requires fewer changes with respect to

the original flight plan.

Diao and Chen [38] propose, instead of using airspace constraints based on sectors,

using constraints based on airways, limiting one aircraft per airway. The authors claim

12 air traffic flow management problem

that this idea could improve the capacity of the airspace while ensuring safe separation.

They solve the problem through a Dantzig-Wolfe decomposition.

Xiao, Cai, and Abbass [115] develop a multi-objective optimization model aiming at

minimizing delays and the workload of air traffic controllers. A heuristic algorithm is

introduced to solve the problem.

Another multi-objective optimization model is proposed in Dal Sasso, Fomeni, Lulli,

and Zografos [34], but this time to consider different stakeholders’ preferences. Their

model gets to include Airspace Users’ priorities, allowing airlines to decide how to

distribute their allocated delays among their flights. In the computational experience,

they obtain the Pareto frontier of non-dominated solutions so these can be discussed

afterward in a CDM process.

The previous work is later continued in Dal Sasso, Fomeni, Lulli, and Zografos [35].

Among the novelties included on it are: 1) Mechanisms to collect priorities so the airlines

do not have to reveal their cost structure, and 2) A simulated annealing algorithm to

solve the problem.

A different way in which the ATFMP has been addressed is through multicommodity

flow networks, i. e., networks where each flight represents a commodity. Among the

research carried out in this area, we highlight the works by Bertsimas and Patterson [17],

Chen, Hu, Zhang, Yin, and Han [29], Chen, Cao, and Sun [31], and Wei, Cao, and Sun

[113]. The difference between this approach and the previous works is that the usage

of commodities does not specify to which particular flights are assigned the proposed

modifications in the flight plans. Thus, a subsequent, normally complex procedure is

needed to reconstruct the flight routes. Furthermore, multicommodity models seem

to be more difficult to solve than those based on modifying concrete flights, being

necessary to employ techniques such as Lagrangian Relaxation.

Note that all the previous works, as well as this thesis, tackle the deterministic version

of the ATFM problem, that is, that in which no source of uncertainty is considered when

obtaining the final flight plan. This standpoint, although dominant in the literature, is

not the only one.

Agustín, Alonso-Ayuso, Escudero, and Pizarro [5] extend the work in Agustín et al.

[4] considering, by means of scenario trees, uncertainty in the capacities of airports and

air sectors. Instances with about 400 flights and up to 48 scenarios are solved.

Balakrishnan and Chandran [11] also deal with uncertainty in the capacity of sectors

and airports, solving cases with 17,500 flights and up to 25 scenarios.

2.3 problem description 13

Chang, Solak, Clarke, and Johnson [27] develop a two-stage formulation for the

ATFM and a heuristic algorithm to solve it. The authors, instead of considering mul-

tiple sectors (like in deterministic versions) and hundreds of flights (like in Agustín et

al. [5]), they consider only one sector and up to 52 flights. However, they solve problems

with more than 30,000 scenarios.

Chen, Chen, and Sun [30] model uncertainty using chance constraints. They defend

this approach as a way to handle big instances of the problem while avoiding the large

formulations arising when using scenario trees, or the too conservative solutions result-

ing from robust optimization. A computational experience solving instances with 3,050

flights is reported.

Corolli, Lulli, Ntaimo, and Venkatachalam [33] develop two different two-stage for-

mulations for the ATFM when considering uncertainty in the capacities. The difference

between the formulations is the type of decisions allowed at each stage. As a charac-

teristic of the models, air delays are only considered in the contiguous sectors to the

landing airport of each flight. To solve the problem, they develop an algorithm based

on relaxing the integrality constraints of the second-stage variables and introducing

them when the solution is fractional. Instances with 9 scenarios and almost 3,200 flights

are solved.

To conclude this section devoted to literature review, we point out that recently, in

Shone, Glazebrook, and Zografos [106] most of the works related to stochastic modeling

in air traffic management have been summarized, including those specific to stochastic

optimization in ATFM.

2.3 problem description

Now, for the sake of future discussion, we formally define the ATFM problem. Let us

consider a given set of airports K, an airspace divided in a set J of disjoint air sectors

and a set of flights F departing from an airport, traversing different air sectors, and

arriving at an airport in the system. The planning horizon considered at this level is

that one day, following the most common approach in literature, is discretized into

a set of time periods (usually 5 to 15 minutes in length). Sectors, as well as airports,

have a limited capacity, i. e., security restrictions limit the number of flights that can

use these elements at each time period. When the capacity required to execute the

original flight plans is greater than available, e. g., due to weather conditions or a peak in

14 air traffic flow management problem

traffic demand, the operator of the ATFM system (central decision-maker) must propose

some changes to the original plans, while minimizing the global costs derived from

these. An important feature within this problem is the existence of continued flights,

i. e., situations in which a flight must wait to take off until a previous one has landed,

usually because both are operated by the same aircraft. This fact causes an effect which

propagates decisions to the entire network of flights.

A flight plan determines the route and time scheduled for each flight. That is, the

airports and waypoints (air traffic control points at the boundary or inside each sector)

that a flight must cross, as well as the scheduled time to pass through each of them.

This definition leads us to represent the set of all possible routes of each flight f ∈ F by

a directed graph Gf = (Nf ,Af), where Nf is the set of nodes (airports and waypoints),

and Af the set of arcs defining the scheduled and potential alternative routes.

For the sake of illustration, let us consider the example depicted in Figure 1.

k1

k2

k3

I II

III IV

kout
1

kin
2 kout

2

kin
3

w1 w2 w3

w4 w5

w6
w7

w8

Figure 1: Illustrative example with three airports and four air sectors.

There are four air sectors (I, II, III and IV), three airports (k1, k2 and k3) and eight way-

points (w1, . . ., w8). Additionally, for each airport ki we consider two boundary nodes,

kin
i and kout

i , representing the entrance to and the exit from the airport ki, respectively.

This example shows three flights, f = 1 departing from k1 and going to k3, f = 2 from

k1 to k2, and f = 3 from k2 to k3. Note that for the former, two alternative routes have

been considered. Thus, G1 = (N1,A1) is defined as follows:

N1 ={k1, kout
1 ,w1,w2,w3,w4,w5, k

in
3 , k3},

A1 =
{
(k1, k

out
1), (kout

1 ,w1), (w1,w2), (w1,w4),

(w2,w3), (w3, k
in
3), (w4,w5), (w5,w3), (k

in
3 , k3)

}
. (2.1)

2.4 previous models 15

Each flight has a time period assigned for taking off from its departure airport and

a scheduled number of time periods for traversing each arc in the graph. Using this

information, it is possible to obtain the scheduled arrival time at each node in the route

(including the airport).

As previously said, if when using the scheduled/original flight plan for all flights in

the network, the capacity at an airport or air sector is violated, then, decisions to modify

some of the flight plans have to be considered. For each flight f , the following decisions

can be made: 1) Assigning ground delays, 2) Making changes in the speed of the aircraft

while it traverses one or more arcs in its route, and 3) Selecting an alternative route. In

order to consider changes in the speed, let us denote by `f ,m,n the scheduled number

of time periods that flight f spends traversing arc (m,n). Then, delays and increases

in the speed can be formulated by defining `f ,m,n and `f ,m,n, upper and lower bounds,

respectively, on the number of time periods that flight f can spend traversing arc (m,n),

for (m,n) ∈ Af (`f ,m,n ≤ `f ,m,n ≤ `f ,m,n).

The modification of the flight plans can combine ground delays, speed changes and

rerouting, such that a flight may be affected by all of these measures simultaneously.

Each decision has a cost associated with it and the goal of the problem is to obtain

a feasible flight plan for each flight at a minimum cost while respecting the capacity

limits in airports and sectors. Note that, since continued flights are operated by the

same aircraft, all decisions concerning a continued flight can also affect its following

flight. Then, if a flight is delayed, its following flight could suffer some delay. Therefore,

variables that account for the availability of the aircraft in the case of continued flights

must be considered.

2.4 previous models

The mathematical formulation that we develop in this thesis is a continuation of the

research line established by Bertsimas and Patterson [16], Bertsimas et al. [20], and

Agustín et al. [4]. Before presenting our proposal in Section 2.5, we briefly introduce

each of these models to show the evolution of the problem and the contributions made

in this respect.

16 air traffic flow management problem

2.4.1 Notation

Sets

T = {1, . . . ,T}, set of time periods.

K, set of airports.

J , set of air sectors.

F , set of flights.

Q = {(f ′, f)}, set of continued flights such that f ′ ∈ F is continued by flight f ∈ F .

Nf , set of nodes that define all the available routes for flight f ∈ F .

Af =
{
(m,n) |m,n ∈ Nf

}
, set of arcs that define all the available routes, i. e., traffic

sequencing, for flight f ∈ F . The subset A∗f ⊆ Af includes the arcs that define the

scheduled route for flight f .

N j , set of nodes that belong to sector j ∈ J .

Ajf = {(m,n) ∈ Af | m,n ∈ Nf ∩N j}, set of arcs for flight f ∈ F that belong to sector

j ∈ J .

Γ−f (n) = {m | (m,n) ∈ Af}, set of nodes such that (m,n) is an in-coming arc of node

n ∈ Nf for flight f ∈ F .

Γ+
f (n) = {m | (n,m) ∈ Af}, set of nodes such that (n,m) is an out-going arc of node

n ∈ Nf for flight f ∈ F .

T nf , set of feasible time periods for flight f to arrive at node n, f ∈ F , n ∈ Nf . Let us

denote by Tnf the last element in T nf .

Parameters

τdf ∈ T , scheduled departure time for flight f ∈ F .

τaf ∈ T , scheduled arrival time at its destination for flight f ∈ F when it follows its

scheduled route.

kdf ∈ K, departure airport for flight f ∈ F .

2.4 previous models 17

kout, airport boundary node for the departure of any flight, k ∈ K.

kaf ∈ K, arrival airport for flight f ∈ F .

kin, airport boundary node for the arrival of any flight, k ∈ K.

`f ,m,n, scheduled travel time (i. e., number of time periods) for flight f ∈ F to traverse

arc (m,n) ∈ Af . Note 1: `
f ,kdf ,k

d,out
f

= 0 and `
f ,ka,inf ,kaf

= 0. Note 2: τaf = τdf +∑
(m,n)∈A∗f

`f ,m,n.

`f ,m,n and `f ,m,n, maximum and minimum travel time (i. e., number of time periods)

that is allowed for flight f ∈ F to traverse arc (m,n) ∈ Af , respectively. Note:

`f ,m,n ≤ `f ,m,n ≤ `f ,m,n, for every arc in Af . In particular, `
f ,kdf ,k

d,out
f

= `
f ,kdf ,k

d,out
f

=

`
f ,kdf ,k

d,out
f

= 0 and `
f ,ka,inf ,kaf

= `
f ,ka,inf ,kaf

= `
f ,ka,inf ,kaf

= 0.

τf ′,f , turnaround time, i. e., time needed for preparing flight f after the arrival of f ′,

(f ′, f) ∈ Q. Note: it is assumed that τaf ′ + τf ′,f ≤ τdf .

C
t,dep
k , departure capacity of airport k ∈ K at time t ∈ T .

Ct,arr
k , arrival capacity of airport k ∈ K at time t ∈ T .

Ctk, joint departure and arrival capacity of airport k ∈ K at time t ∈ T . Note: Ctk <

C
t,dep
k +Ct,arr

k .

Ctj , capacity of sector j ∈ J at time t ∈ T .

2.4.2 ATFMP by nodes: Bertsimas & Patterson

As mentioned in the previous section, Bertsimas and Patterson [16] is one of the most

influential works in ATFM literature. Proof of that is the number of posterior works

which are based on it. The model considers ground and air delays, but not speed in-

creases or the usage of alternatives routes. Furthermore, instead of associating nodes

with geographical points like in the example shown in Figure 1 (page 14), it defines one

node per sector entrance, so reaching one node means entering the associated sector.

18 air traffic flow management problem

Using this formulation, graph Gf = (Nf ,Af) for flight f = 1 in Figure 1, instead of like

in (2.1) (page 14), it becomes:

N1 ={k1, I, II, IV , k3},

A1 =
{
(k1, I), (I, II), (II, IV), (IV , k3)

}
.

Note that:

• The alternative route that used sector III no longer exists.

• As alternative routes are not considered, each graph Gf is indeed a directed path

where arcs are of the form (n,n+ 1) ∈ Af .

• As said, there is a one-to-one correspondence between each node in Nf and the

airports and sectors that flight f has to cross in its route.

The latter implies that for a given sector j ∈ J in f ’s route, j uniquely identifies

one of the route nodes. Similarly, given j ∈ J in f ’s route, the immediately subsequent

node in the route can be identified by j+ 1, which corresponds to the contiguous sector

of j. This fact will be used in the formulation of the model.

Variables

vtf ,n = 1, if flight f arrives at node n by time t, and 0 otherwise, ∀f ∈ F ,n ∈ Nf , t ∈ T nf .

Note that the variables (due to the usage of “by” in the definition) are step variables,

that is, they indicate if a flight f has arrived at node n at time t or earlier. Thus, if

vtf ,n = 1, then vt+1
f ,n = . . . = v

Tnf
f ,n = 1.

Example ATFM

For the sake of illustration when discussing the different models presented in the thesis,

we elaborated an example based on the situation depicted in Figure 1 (page 14) for flight

f = 1. Consider that the scheduled departure time for that flight is τd1 = 1, and that is

possible to delay its departure for at most two extra periods. That is, the flight cannot

depart later than t = 3. Consider also that the scheduled and maximum travel times for

each arc of the route are those shown in Table 1.

Noting that T k11 contains the possible departure times of the flight, i. e., T k11 = {1, 2, 3},
the rest of the sets T n1 can be easily computed using the travel time information in

2.4 previous models 19

Table 1: Travel times for f = 1 in the example.

(k1, I) (I, II) (II, IV) (IV , k3)

`1,m,n 0 1 3 2

`1,m,n 0 2 5 2

Table 1. Concretely, given node n and T n1 , T n+1
1 = {Tn1 + `1,n,n+1, . . . , T

n
1 + `1,n,n+1},

where Tn1 is the first time period at which node n can be reached, i. e., Tn1 = min{t ∈ T n1 }.
Recall that Tnf = max{t ∈ T nf }.

Figure 2 shows a graph representation of the flight route of the example, together

with the sectors crossed by the flight, travel times and sets T n1 . The vertical dashed lines

represent the sector limits.

k1 I II IV k3
(0, 0) (1, 2) (3, 5) (2, 2)

I II IV

nm
(`f ,m,n, `f ,m,n)

T k1f = {1, 2, 3}

T If = {1, 2, 3} T IIf = {2, . . . , 5} T IVf = {5, . . . , 10}

T k3f = {7, . . . , 12}

Figure 2: ATFMP by nodes for f = 1 in the example.

To conclude the example for this formulation, consider that the new flight plan for

f = 1 includes the following modifications: One period of departure delay and two

periods of air delay when traversing sector II (arc (II, IV)). In that case, decisions

variables would take the following values:

v11,k1 = 0 v11,I = 0 v21,II = 0 v51,IV = 0 v71,k3 = 0

v21,k1 = 1 v21,I = 1 v31,II = 1 v61,IV = 0 v81,k3 = 0

v31,k1 = 1 v31,I = 1 v41,II = 1 v71,IV = 0 v91,k3 = 0

v51,II = 1 v81,IV = 1 v101,k3 = 1

v91,IV = 1 v111,k3 = 1

v101,IV = 1 v121,k3 = 1

20 air traffic flow management problem

Objective function

Deviations from the original flight plan are penalized in the objective function by ac-

counting for ground and air delays. The total ground delay assigned to flight f is com-

puted as the difference between the actual and planned departure time:

gf =
∑

t∈T kf :k=kdf

(t− τdf)(vtf ,k − vt−1f ,k) =
∑

t∈T kf :k=kdf

t(vtf ,k − vt−1f ,k)− τ
d
f .

Note that in the sum, all the terms (vtf ,k − v
t−1
f ,k) will be equal to zero, but one, which

will be equal to 1. Concretely, if the flight departs at time t′, (vt
′
f ,k − v

t′−1
f ,k) = 1 and

gf = t′ − τdf .

Similarly, the delay in air is the difference between the actual and planned arrival

time minus the delay due to ground holding:

af =
∑

t∈T kf :k=kaf

(t− τaf − gf)(vtf ,k − vt−1f ,k) =
∑

t∈T kf :k=kaf

t(vtf ,k − vt−1f ,k)− τ
a
f − gf .

These two quantities are multiplied by cost coefficients cgf and caf , respectively, leading

to the following objective function seeking for minimization:

min
∑
f∈F

(cgfgf + cafaf). (2.2)

Note that ground delays, as they are safer than air delays, should be preferred, i. e.,

cgf < caf .

Capacity constraints

∑
f∈F :

{kdf=k,t∈T
k
f }

(vtf ,k − vt−1f ,k) ≤ C
t,dep
k ∀k ∈ K, t ∈ T , (2.3)

∑
f∈F :

{kaf=k, t∈T
k
f }

(vtf ,k − vt−1f ,k) ≤ C
t,arr
k ∀k ∈ K, t ∈ T , (2.4)

∑
f∈F :

{kaf=k, t∈T
k
f }

(vtf ,k − vt−1f ,k) +
∑
f∈F :

{kdf=k,t∈T
k
f }

(vtf ,k − vt−1f ,k) ≤ C
t
k ∀k ∈ K, t ∈ T , (2.5)

∑
f∈F

(vtf ,j − vtf ,j+1) ≤ Ctj ∀j ∈ J , t ∈ T , (2.6)

2.4 previous models 21

Flight structure constraints

v
t+`f ,n,n+1

f ,n+1 − vtf ,n ≤ 0 ∀f ∈ F ,n ∈ Nf \ {kaf}, t ∈ T nf , (2.7)

vt
f ,kdf
− vt−τf ′,ff ′,ka

f ′
≤ 0 ∀(f ′, f) ∈ Q, t ∈ T

kdf
f , (2.8)

vtf ,n − vt−1f ,n ≥ 0 ∀f ∈ F ,n ∈ Nf , t ∈ T nf , (2.9)

v
T
kdf
f

f ,kdf
= 1 ∀f ∈ F , (2.10)

Variables’ domain

vtf ,n ∈ {0, 1} ∀f ∈ F ,n ∈ Nf , t ∈ T nf . (2.11)

In the model, constraints (2.3)-(2.6) guarantee that capacity in airports and air sectors

is respected at all times. Constraints (2.7) establish connectivity between the route nodes

and ensure that each flight f spends at least the scheduled time (`f ,n,n+1) going from

one node to another. Constraints (2.8) are for the connection of continued flights (f ′, f):

flight f cannot depart before flight f ′ has landed and spent τf ′,f time units at the

airport preparing the aircraft. Constraints (2.9) are for time connectivity: they state that

if a flight has not arrived at time t to a node of the route, then neither has it arrived

before. Finally, constraints (2.10) ensure that all flights take off.

Example ATFM (continuation)

Note that in the model, there are no constraints limiting the maximum number of time

periods for going from one node to the subsequent one. Therefore, it is possible to

obtain solutions that are feasible from a mathematical point of view (no constraint

violation), but not from a physical one (e. g., excessive speed reduction). This is because

the authors do not work with maximum travel times (`f ,m,n), but just with the latest

possible time to reach each node (sets T nf). However, sets T nf only control (indirectly)

the total delay up to a node, but not where the delay occurs, i. e., all the air delay might

be assigned to occur in one arc of the route, which is not feasible from a physical point

of view.

22 air traffic flow management problem

To illustrate this point, see that in the example, no constraint forbids spending 6 time

periods (instead of just 5 as exposed in Table 1) in arc (II, IV). That is, the following

solution is also feasible (changes with respect to the previous one in bold):

v11,k1 = 0 v11,I = 0 v21,II = 0 v51,IV = 0 v71,k3 = 0

v21,k1 = 1 v21,I = 1 v31,II = 1 v61,IV = 0 v81,k3 = 0

v31,k1 = 1 v31,I = 1 v41,II = 1 v71,IV = 0 v91,k3 = 0

v51,II = 1 v81,IV = 0 v101,k3 = 0

v91,IV = 1 v111,k3 = 1

v101,IV = 1 v121,k3 = 1

2.4.3 ATFMRP by nodes: Bertsimas, Lulli & Odoni

Bertsimas, Lulli, and Odoni [20] extend the previous work by considering the usage

of alternative routes and penalizing deviations from the original flight plan more accu-

rately. They maintain the same variables’ definition (vtf ,n), and the one-to-one relation-

ship between route nodes and sectors.

Example ATFM (continuation)

Let us continue with the example presented before, but this time to illustrate how rerout-

ing would be taken into account with variables vtf ,n. The first thing to mention is that

due to: i) Defining the variables by nodes instead arcs (unlike, for example, Agustín

et al. [4] or this thesis), and ii) Maintaining the one-to-one relationship between nodes

and sectors, this new model can only incorporate rerouting in a restricted way. Let see

that with the next three cases:

• Case 1: The situation of the example, i. e., that shown in Figure 1 (page 14) for

flight f = 1, cannot be modeled because there is a reentry1 to sector II. See detailed

explanation after the mathematical formulation.

• Case 2: If in the example, instead of having the alternative route as: {(I, II),
(II, III), (III, II), (II, IV)}, it were {(I, II), (II, III), (III, IV)}, i. e., without

reentry, it still could not be modeled. This is because two sectors adjacent to sector

IV would be used. See detailed explanation after the mathematical formulation.

1 Note that reentries are common when working with non-convex sectors.

2.4 previous models 23

• Case 3: If the alternative route were {(I, III), (III, IV)}, then it could be modeled.

Note in Figure 1, however, that this alternative route is much longer than those

described in the previous two cases.

For the sake of illustration, we will consider that the situation of the example is that

described in Case 3. That is, the alternative route is not {(I, II), (II, III), (III, II),
(II, IV)}, but {(I, III), (III, IV)}. For that situation, the graph representation of the

flight routes, jointly with travel times and sets T nf is shown in Figure 3.

k1 I II IV k3
(0, 0) (1, 2) (3, 5) (2, 2)

I II IV

nm
(`f ,m,n, `f ,m,n)

T k1f = {1, 2, 3}

T If = {1, 2, 3} T IIf = {2, . . . , 5} T IVf = {5, . . . , 10} ∪ {9, . . . , 13}

T k3f = {7, . . . , 15}

III
(1, 2) (7, 8)

III
T IIIf = {2, . . . , 5}

Figure 3: ATFMRP by nodes for Case 3 and f = 1 in the example.

Note that set T IV1 is formed by the union of the possible arrival times to node IV

from both routes.

To conclude the example, consider that the solution of the model includes: i) Depart-

ing with no delay, ii) Using the alternative route, and iii) Delaying the flight one period

when traversing sector III (arc (III, IV)). In that case, all the variables associated with

node II would be equal to zero. For the rest, their values would be:

v11,k1 = 1 v11,I = 1 v21,III = 1 v51,IV = 0 v71,k3 = 0

v21,k1 = 1 v21,I = 1 v31,III = 1
...

...

v31,k1 = 1 v31,I = 1 v41,III = 1 v91,IV = 0 v111,k3 = 0

v51,III = 1 v101,IV = 1 v121,k3 = 1

...
...

v131,IV = 1 v151,k3 = 1

24 air traffic flow management problem

Objective function

Respect to the previous work, this model introduces a substantial improvement in the

objective function. Delays are penalized in a superlinear way: g1+ε1f + a1+ε2f , where

0 < ε1 < ε2 < 1. Note that with this new form of penalization, in addition to pre-

ferring ground to air delays (ε1 < ε2), a fairer distribution of these is also achieved. It

is preferable to delay (either in ground or air) two flights one time period each rather

than one flight two periods. Furthermore, as stated in Bertsimas et al. [20], if ε1 and ε2

are closed to zero, the following approximation can be done:

g1+ε1f + a1+ε2f = g1+ε1f + a1+ε2f + g1+ε2f − g1+ε2f
∼= h1+ε2f − (g1+ε2f − g1+ε1f),

where hf = gf + af , is the total delay. Using h1+ε2f over g1+ε1f + a1+ε2f makes it preferable

to assign one unit of ground delay to one flight and one unit of air delay to another,

than both delays to a single flight. Note that each term is still computed linearly:

h1+ε2f =
∑

t∈T kf :k=kdf

(t− τaf)1+ε2(vtf ,k − vt−1f ,k),

g1+ε2f − g1+ε1f =
∑

t∈T kf :k=kdf

(
(t− τdf)1+ε2 − (t− τdf)1+ε1

)
(vtf ,k − vt−1f ,k).

As a result, the objective function becomes:

min
∑
f∈F

(
h1+ε2f − (g1+ε2f − g1+ε1f)

)
. (2.12)

Capacity constraints

∑
f∈F :

{kdf=k,t∈T
k
f }

(vtf ,k − vt−1f ,k) ≤ C
t,dep
k ∀k ∈ K, t ∈ T , (2.13)

∑
f∈F :

{kaf=k, t∈T
k
f }

(vtf ,k − vt−1f ,k) ≤ C
t,arr
k ∀k ∈ K, t ∈ T , (2.14)

∑
f∈F :

{kaf=k, t∈T
k
f }

(vtf ,k − vt−1f ,k) +
∑
f∈F :

{kdf=k,t∈T
k
f }

(vtf ,k − vt−1f ,k) ≤ C
t
k ∀k ∈ K, t ∈ T , (2.15)

∑
f∈F

max
{
0, vtf ,j −

∑
n∈Γ+

f (j)

vtf ,n
}
≤ Ctj ∀j ∈ J , t ∈ T , (2.16)

2.4 previous models 25

Flight structure constraints

vtf ,n −
∑

m∈Γ−f (n)

v
t−`f ,m,n

f ,m ≤ 0 ∀f ∈ F ,n ∈ Nf \ {kdf}, t ∈ T nf , (2.17)

v
Tnf
f ,n −

∑
m∈Γ+

f (n)

v
Tmf
f ,m ≤ 0 ∀f ∈ F ,n ∈ Nf \ {kaf}, (2.18)

∑
m∈Γ+

f (n)

v
Tmf
f ,m ≤ 1 ∀f ∈ F ,n ∈ Nf \ {kaf}, (2.19)

vt
f ,kdf
− vt−τf ′,ff ′,ka

f ′
≤ 0 ∀(f ′, f) ∈ Q, t ∈ T

kdf
f , (2.20)

vtf ,n − vt−1f ,n ≥ 0 ∀f ∈ F ,n ∈ Nf , t ∈ T nf , (2.21)

v
T
kdf
f

f ,kdf
= 1 ∀f ∈ F , (2.22)

Variables’ domain

vtf ,n ∈ {0, 1} ∀f ∈ F ,n ∈ Nf , t ∈ T nf . (2.23)

In the model, constraints (2.13)-(2.16) are for the capacity limits. The maximum is

required in (2.16) because vtf ,j −
∑

n∈Γ+
f (j)

vtf ,n is negative whenever flight f arrives at

one of the subsequent sectors of j without flying through sector j. Constraints (2.17)

stipulate that a flight cannot arrive at node n by time t if it has not arrived at any of

its predecessor nodes by time t− `f ,m,n. Constraints (2.18) and (2.19) make flights reach

one of their subsequent nodes no later than allowed. Constraints (2.20)-(2.22) are exactly

the same as constraints (2.8)-(2.10) in the previous model.

In the paper, the authors also present a series of valid inequalities (cuts) to strengthen

the model formulation. And although no comparison data is provided in the paper,

the authors claim to have verified the benefits of using the inequalities in a few tests

conducted.

Example ATFM (continuation)

Once presented the formulation, it can be explained why the alternative route situations

described in Case 1 and 2 cannot be modeled with this formulation. For Case 1 there

are two problems:

26 air traffic flow management problem

1. Consider that the alternative route is used and that node II is reached at t1, node

III at t2, and node II is reached again (in the reentry) at t3, i. e., vt1f ,II = 1,

vt2f ,III = 1 and vt3f ,II = 1, with t1 < t2 < t3. Due to the variables’ definition, once

node III is reached, in constraints (2.16) the term
∑

n∈Γ+
1 (II)

vt1,n will always be

positive for t > t2. Therefore, for t ≥ t3 > t2:

vt1,II −
∑

n∈Γ+
1 (II)

vt1,n = vt1,II − (vt1,III + vt1,IV) = 1− 1− vt1,IV ≤ 0,

that is, when reentry, no capacity consumption will be taken into account.

2. When using the alternative route, both, nodes III and IV become part of the

solution, i. e., v
T IIIf

f ,III = v
T IVf
f ,IV = 1. However, this would cause constraint (2.19)

for node II to be violated:
∑

m∈Γ+
f (II)

v
Tmf
f ,m = v

T IIIf

f ,III + v
T IVf
f ,IV = 2. Note that these

constraints forbid, for a given sector j, using more than one adjacent sector to it.

The latter reason is what also prevents the formulation from being able to model

Case 2. Note that for Case 1, making a copy II ′ of node II such that the alternative

route becomes {(II, III), (III, II ′), (II, IV)}, does not solve the problem. Besides not

respecting the one-to-one relationship between nodes and sectors, it does not solve the

second issue listed.

Note also that the potential problem mentioned for Bertsimas and Patterson [16]

about obtaining feasible solutions from a mathematical point of view, but not from a

physical one, still exists in this one.

As it will be shown, formulations based on arcs instead of nodes avoid all these issues,

which make them more suitable to address the ATFM problem. Furthermore, they also

avoid the usage of the maximum in the sector capacity constraints (2.16).

2.4.4 ATFMRP by arcs: Agustín, Alonso-Ayuso, Escudero & Pizarro

Agustín, Alonso-Ayuso, Escudero, and Pizarro [4] present a model that also extends

that of Bertsimas and Patterson [16], but with some improvements respect to the one in

Bertsimas et al. [20]. Concretely:

1. Variables are defined by arcs instead of nodes. This turns out to provide: i) A better

modeling framework (e. g., it solves the modeling rerouting problems discussed

before) and, ii) A finer control of the flight plans modifications. In fact, as exposed

2.4 previous models 27

in Agustín [2], the ATFMRP formulated by nodes can be viewed as a particular

case of the ATFMRP formulated by arcs.

2. Related to the previous point, as deviations from the original flight plan can be

measured more accurately, a more realistic objective function is proposed. Partic-

ularly, deviations of the flight plans at intermediate nodes of the route are also

considered and penalized.

3. In addition to delays, increases in aircraft’s speed are also considered.

4. The model does not associate nodes with sectors, but with geographical points

of the airspace. And these geographical points are the ones associated with the

boundary or interior of each sector (recall in Figure 1, page 14). This subtle dif-

ference allows to: i) Represent flight routes more accurately (more waypoints can

conform the routes), and ii) Separate the flight routes from the sector configura-

tion, so the latter can change along the time horizon (details in Subsection 2.5.2).

To handle entry and exiting operations to sectors with this formulation based on arcs,

boundary nodes are defined to belong to all the sectors they connect. That is, a node can

belong to more than one sector. For example, waypoint w1 in Figure 1 would belong to

sectors I and II. Additionally, airports are also represented by arcs. Particularly, by the

departure and landing arcs (k, kout) and (kin, k), respectively. See details in the example

later on.

Additional sets

T m,n
∗,f , set of feasible time periods for flight f ∈ F to arrive at node n through arc

(m,n) ∈ Af . Let us denote by Tm,n
∗,f the last element in T m,n

∗,f .

T̃ m,n
f , smallest interval containing T m,n

∗,f . The distinction between the two sets is be-

cause, due to the rerouting option, T m,n
∗,f may be formed of no consecutive ele-

ments (e. g., T m,n
∗,f = {5, 7, 9} and T̃ m,n

f = {5, 6, 7, 8, 9}).

T̃ nf , smallest interval containing T nf .

N j+
f = {n| n ∈ N j

f , Γ−f (n) ∩N
j
f = ∅}, set of in-coming nodes to sector j ∈ J in the

route of flight f ∈ F .

N j−
f = {n| n ∈ N j

f , Γ+
f (n) ∩N

j
f = ∅}, set of out-going nodes from sector j ∈ J in the

route of flight f ∈ F .

28 air traffic flow management problem

Additional parameters

cm,n
f , cost of flight f for using arc (m,n), f ∈ F , (m,n) ∈ Af .

cnf ,t, cost of flight f for arriving at node n at time period t, f ∈ F , n ∈ Nf \ {kdf}, t ∈ T̃ nf .

cn+f , cn−f , costs of flight f for using any arc heading to node n more or less time periods

than scheduled, respectively, f ∈ F , n ∈ Nf \ {kdf , k
a,in
f , kaf}.

ca+f , ca−f , costs of flight f for flying more or less time periods than scheduled, respec-

tively, f ∈ F .

Variables

xtf ,m,n = 1, if flight f arrives at node n using arc (m,n) by time t, and 0 otherwise,

∀f ∈ F , (m,n) ∈ Af , t ∈ T̃ m,n
f .

ξn+f , ξn−f , real non-negative variables that measure, respectively, the positive and neg-

ative difference between the time spent by flight f traversing arc (m,n) and the

scheduled one (`f ,m,n), f ∈ F , (m,n) ∈ Af .

η+f , η
−
f , real non-negative variables that measure, respectively, the positive and negative

difference between the planned and actual trip length for flight f ∈ F .

Note that the xtf ,m,n variables are still formulated as step variables. Note also the

following relationship between these variables and the vtf ,n ones:

vtf ,n =
∑

m∈Γ−f (n)

xtf ,m,n ∀f ∈ F ,n ∈ Nf , t ∈ T nf .

Example ATFM (continuation)

Let us analyze how the example discussed for the previous models would be formu-

lated with these new variables. First of all, notice that now G1 is as in (2.1) (page 14).

Figure 4 shows a graphical representation of it together with information about the

travel times2. Note that in the figure, the vertical dashed lines divide each boundary

node in two, meaning that each node belongs to both sectors it connects. Note also that,

as previously said, airports are now represented by departure and landing arcs.

2 For illustration purposes, the travel times are different from the previous examples.

2.4 previous models 29

k1 kout
1 w1 w2 w3 kin

3 k3
(0, 0, 0) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (0, 0, 0)

I II IV Airport k3Airport k1

nm
(`f,m,n, `f,m,n, `f,m,n)

w4 w5

(2, 2, 2)

(3, 4, 4)

(2
, 3
, 3
)

III

Figure 4: ATFMRP by arcs for f = 1 in the example.

With the information in the figure, and remembering that the flight was scheduled to

depart at τd1 = 1 and not later than t = 3, we can obtain the different sets required:

Sets N j , N j+ and N j−

Notice how a node belong to all the sectors it connects.

N I
1 = {kout

1 ,w1} N I+
1 = {kout

1 } N I−
1 = {w1}

N II
1 = {w1,w2,w3,w4,w5} N II+

1 = {w1,w5} N II−
1 = {w3,w4}

N III
1 = {w4,w5} N III+

1 = {w4} N III−
1 = {w5}

N IV
1 = {w3, k

in
3 } N IV +

1 = {w3} N IV−
1 = {kin

3 }

Sets Aj

AI1 = {(kout
1 ,w1)} AII1 = {(w1,w2), (w2,w3), (w1,w4), (w5,w3)}

AIII1 = {(w4,w5)} AIV1 = {(w3, k
in
3)}

Sets T nf and T̃ nf
For the sake of conciseness, we just show these sets for nodes k1,w2,w5,w3 and kin

3 .

Note that for w3 and kin
3 , T nf and T̃ nf are different.

T k11 = {1, 2, 3} T̃ k11 = {1, 2, 3}

T w2
1 = {3, 4, 5} T̃ w2

1 = {3, 4, 5}

T w5
1 = {7, 8, 9, 10} T̃ w5

1 = {7, 8, 9, 10}

T w3
1 = {4, 5, 6} ∪ {9, . . . , 13} T̃ w3

1 = {4, . . . , 13}

T k
in
3

1 = {5, 6, 7} ∪ {10, . . . , 14} T̃ k
in
3

1 = {5, . . . , 14}

30 air traffic flow management problem

Sets T m,n
∗,f and T̃ m,n

f

Again, the sets are just shown for a few nodes. Note that for the example, T m,n
∗,f and

T̃ m,n
f are only different in the last case.

T w1,w2
∗,1 = {3, 4, 5} T̃ w1,w2

1 = {3, 4, 5}

T w2,w3
∗,1 = {4, 5, 6} T̃ w2,w3

1 = {4, 5, 6}

T w4,w5
∗,1 = {7, 8, 9, 10} T̃ w4,w5

1 = {7, 8, 9, 10}

T w5,w3
∗,1 = {9, . . . , 13} T̃ w5,w3

1 = {9, . . . , 13}

T w3,kin
3

∗,1 = {5, 6, 7} ∪ {10, . . . , 14} T̃ w3,kin
3

1 = {5, . . . , 14}

To conclude the example, we show the values that the variables would take if the

flight took off on schedule, it used the alternative route and it were advanced 1 time

period when traversing arc (w4,w5) and another when traversing arc (w5,w3). For arcs

{(k1, kout
1), (kout

1 ,w1), (w1,w4), (w4,w5)}, we had that:

x11,k1,kout
1

= 1 x21,kout
1 ,w1

= 1 x41,w1,w4
= 1 x71,w4,w5

= 1

x21,k1,kout
1

= 1 x31,kout
1 ,w1

= 1 x51,w1,w4
= 1 x81,w4,w5

= 1

x31,k1,kout
1

= 1 x41,kout
1 ,w1

= 1 x61,w1,w4
= 1 x91,w4,w5

= 1

x101,w4,w5
= 1

and for arcs {(w5,w3), (w3, k
in
3), (k

in
3 , k3)}:

x91,w5,w3
= 1 x5

1,w3,kin
3
= 0 x5

1,kin
3 ,k3

= 0

x101,w5,w3
= 1

...
...

x111,w5,w3
= 1 x9

1,w3,kin
3
= 0 x9

1,kin
3 ,k3

= 0

x121,w5,w3
= 1 x10

1,w3,kin
3
= 1 x10

1,kin
3 ,k3

= 1

x131,w5,w3
= 1

...
...

x14
1,w3,kin

3
= 1 x14

1,kin
3 ,k3

= 1.

All the variables associated with arcs (w1,w2) and (w2,w3) would be equal to zero. And

the values for the xi and eta variables would be: ξw5−
1 = 1, ξw3−

1 = 1, η+1 = 5, η−1 = 0,

and the rest equal to zero.

2.4 previous models 31

Objective function

In Agustín et al. [4] multiple terms conform the objective function. Below we just present

the most relevant ones, referring the reader to the paper for the rest.

1. Cost of using each arc, including that for alternative routes:∑
f∈F

∑
(m,n)∈Af

cm,n
f x

Tm,n
∗,f
f ,m,n.

2. Cost of early and late arrivals at each node:∑
f∈F

∑
n∈Nf\{kdf}

∑
m∈Γ−f (n)

∑
t∈T̃ m,n

f

cnft(x
t
f ,m,n − xt−1f ,m,n).

3. Cost of deviating from the planned speed:∑
f∈F

∑
n∈Nf\{kdf ,k

a,in
f ,kaf}

(cn+f ξn+f + cn−f ξn−f).

4. Cost of deviating from the scheduled travel time:∑
f∈F

(ca+f η+f + ca−f η−f).

Note that the last three terms of the objective function reward, not only arriving

without any delay, but also without changing the planned speed.

5. Cost to reward ground versus air delays:∑
f∈F

[∑
t∈T

k
a,in
f

,ka
f

∗,f

c
kaf
ft

(
xt
f ,ka,inf ,kaf

− xt−1
f ,ka,inf ,kaf

)
−

∑
t∈T

kd
f
,k
d,out
f

∗,f

c
kdf
ft

(
xt
f ,kdf ,k

d,out
f

− xt−1
f ,kdf ,k

d,out
f

)]
.

The reward occurs when late arrivals (positive minuend) are partially or totally

caused by late departures (positive subtrahend).

32 air traffic flow management problem

Capacity constraints

∑
f∈F :

{kdf=k,t∈T̃
k,kout

f }

(
xtf ,k,kout − xt−1f ,k,kout

)
≤ Ct,dep

k ∀k ∈ K, t ∈ T , (2.24)

∑
f∈F :

{kaf=k, t∈T̃
kin,k
f }

(
xtf ,kin,k − x

t−1
f ,kin,k

)
≤ Ct,arr

k ∀k ∈ K, t ∈ T , (2.25)

∑
f∈F :

{kdf=k,t∈T̃
k,kout

f }

(
xtf ,k,kout − xt−1f ,k,kout

)
+

∑
f∈F :

{kaf=k, t∈T̃
kin,k
f }

(
xtf ,kin,k − x

t−1
f ,kin,k

)
≤ Ctk ∀k ∈ K, t ∈ T , (2.26)

∑
f∈F

(∑
n∈N j+f

∑
m∈Γ−f (n)

xtf ,m,n −
∑

n∈N j−f

∑
m∈Γ−f (n)

xtf ,m,n

)
≤ Ctj ∀j ∈ J , t ∈ T , (2.27)

Flight structure constraints

∑
m∈Γ+

f (n)

x
t+`f ,n,m
f ,n,m ≤

∑
m∈Γ−f (n)

xtf ,m,n ≤
∑

m∈Γ+
f (n)

x
t+`f ,n,m
f ,n,m

∀f ∈ F ,n ∈ Nf \ {kdf , kaf}, t ∈ T̃ nf , (2.28)

x
T
kdf ,k

d,out
f

∗,f

f ,kdf ,k
d,out
f

= 1 ∀f ∈ F , (2.29)

xt−1f ,m,n − x
t
f ,m,n ≤ 0 ∀f ∈ F , (m,n) ∈ Af , t ∈ T m,n

∗,f , (2.30)

xt−1f ,m,n − x
t
f ,m,n = 0 ∀f ∈ F , (m,n) ∈ Af , t ∈ T̃ m,n

f \ T m,n
∗,f , (2.31)

xt
f ,kdf ,k

d,out
f

− xt−τf ′,f
f ′,ka,inf ,kaf

≤ 0 ∀(f ′, f) ∈ Q, t ∈ T̃
kdf ,k

d,out
f

f , (2.32)

Delay constraints

∑
m∈Γ+

f (n)

(∑
t∈T̃ n,mf

t(xtf ,n,m − xt−1f ,n,m)
)
−

∑
m∈Γ−f (n)

(∑
t∈T̃ m,n

f

t(xtf ,m,n − xt−1f ,m,n)
)
−

∑
m∈Γ+

f (n)

`f ,n,mx
Tn,m∗,f
f ,n,m − ξ

n+
f + ξn−f = 0 ∀f ∈ F ,n ∈ Nf\{kdf , k

a,in
f , kaf}, (2.33)

2.5 new mathematical formulation 33

∑
t∈T̃

k
a,in
f

,ka
f

f

t(xt
f ,ka,inf ,kaf

− xt−1
f ,ka,inf ,kaf

)−
∑

t∈T̃
kd
f
,k
d,out
f

f

t(xt
f ,kdf ,k

d,out
f

− xt−1
f ,kdf ,k

d,out
f

)−

(τaf − τdf)x
T
k
a,in
f

,kaf
∗,f

f ,ka,inf ,kaf
− η+f + η−f = 0 ∀f ∈ F , (2.34)

Variables’ domain

ξn+f , ξn−f ≥ 0 ∀f ∈ F ,n ∈ Nf\{kdf , k
a,in
f , kaf}, (2.35)

η+f , η
−
f ≥ 0 ∀f ∈ F , (2.36)

xtf ,m,n ∈ {0, 1} ∀f ∈ F , (m,n) ∈ Af , t ∈ T̃ m,n
f . (2.37)

In the model, constraints (2.24)-(2.27) ensure capacity limits. Constraints (2.28) entail

that if a flight reaches a node by time t, then it reaches one of the subsequent ones by

a time period between t+ `f ,n,m and t+ `f ,n,m. Constraints (2.29) ensure that all flights

take off. Constraints (2.30) are for time connectivity. Constraints (2.31) forbid to make

decisions in non-feasible time periods. Constraints (2.32) stand for connectivity between

continued flights. Constraints (2.33) and (2.34) are to compute delays at intermediate

waypoints of the route.

Note that with this formulation, the rerouting problems described in Case 1 and 2 for

the previous model (ATFMRP by nodes) are no longer an issue: i) Capacity constraints,

as accounting for arcs, can distinguish between multiples entries to sector II, and ii) The

constraints causing the issue for Case 2 are not needed in the model.

Finally, to conclude the discussion, we mention that, despite the improvements in-

troduced by this latter model, it still has some limitations related to the modifications

of the flight plans at intermediate waypoints of the route. These limitations, fully dis-

cussed in the next section, motivated us to develop two new mathematical formulations

for the ATFM problem.

2.5 new mathematical formulation

Note from the discussion of the previous section that the advantages of Agustín et al. [4]

over the model of Bertsimas et al. [20] mainly arise from the definition of the variables.

Defining the variables by arcs instead of nodes allows collecting more information,

which results in better modeling. Based on this idea, we propose a new formulation

34 air traffic flow management problem

that, by adding to the variables’ definition of Agustín et al. [4] information about the

time leaving the tail node, and not only about the time reaching the head one, allows

for a better cost representation and control of the decisions involved. Particularly, our

proposal solves an important limitation of the previous models: Knowing the number of

time periods spent at each arc of the route. This means, as fully discuss after presenting

the first mathematical formulation, 1) having more control over how much each flight

deviates from its initial flight plan, 2) being able to penalized changes of speed in a

non-linear way (as occurs in practice3), and 3) proposing solutions which require less

abrupt changes (e. g., smoother speed changes).

In addition to providing a more realistic modeling of the problem, our formulation

turns out to be equivalent to a shortest path problem in multiple networks with limited

shared resources. This fact results in most of the constraints of our ATFM formulation

being facets, and in a larger variety of solving strategies, which motivates future chap-

ters of the thesis.

Additional sets and parameters

• Fp̄ = {f ∈ F| @f ′ ∈ F : (f ′, f) ∈ Q}, set of flights without a predecessor.

• T m,n
f = {(t1, t2)| t1 ∈ T mf , t2 ∈ T nf , `f ,m,n ≤ t2 − t1 ≤ `f ,m,n}, set of feasible pair

time combinations for flight f ∈ F to travel through arc (m,n) ∈ Af starting at

t1 and finishing at t2. Note: since `f ,m,n = `f ,m,n = 0 for (m,n) = (kdf , k
d,out
f) and

(m,n) = (ka,inf , kaf), then T m,n
f = {(t, t)| t ∈ T nf }, for those special arcs.

• ct1,t2f ,m,n, penalization for flight f ∈ F for using arc (m,n) ∈ Af departing from

node m at t1 and arriving at node n at t2, (t1, t2) ∈ T m,n
f .

Note that for every arc (m,n) ∈ Af in the air space, ct1,t2f ,m,n represents the penalization

of speed decreases of the aircraft for t2 − t1 > `f ,m,n, whereas for t2 − t1 < `f ,m,n it

represents the penalization of speed increases. The rerouting cost can be considered by

penalizing arcs inAf \A∗f . For the special arcs (ka,inf , kaf) and (kdf , k
d,out
f), ct,t

f ,kdf ,k
d,out
f

repre-

sents the penalization of a ground delay of t− τdf time periods, and ct,t
f ,ka,inf ,kaf

represents

the penalization of late (for t > τaf) or early (for t < τaf) arrivals.

The existence of continued flights has a propagation effect in the network. In partic-

ular, for each pair (f ′, f) ∈ Q, two different situations may appear: 1) Flight f ′ arrives

3 As exposed in Akgunduz et al. [8], the rate of fuel consumption is not a linear function of speed, so it

should not be penalized in a linear way.

2.5 new mathematical formulation 35

on time (or, in some cases, with a small delay), then the plan of flight f is not affected;

and 2) Flight f ′ arrives late, so flight f departs with some delay. Now, let us consider

the following sets associated with each pair (f ′, f) ∈ Q:

• For each t ∈ T
kdf
f , T tf ′,f =

{
t′ | t′ ∈ T

ka
f ′

f ′ such that t = max{τdf , t′ + τf ′,f}
}

. If flight

f ′ arrives in one of these periods, then t is the first period at which the aircraft

assigned to f is ready to take off.

For the sake of clarity in the definition of sets T tf ′,f , let us consider a pair of flights

(f ′, f) ∈ Q such that f ′ can arrive at T
ka
f ′

f ′ = {5, 6, 7, 8}, and f can depart at T
kdf
f =

{7, 8, 9}, but waiting a minimum of τf ′,f = 1 time period for preparing the aircraft.

Thus, if flight f ′ arrives at t′ = 5, flight f must wait until t = 7 before departing.

Therefore, T 7
f ′,f = {5, 6}, T 8

f ′,f = {7}, T 9
f ′,f = {8}. Note that

{
T tf ′,f , t ∈ T

kdf
f

}
defines a

partition of T
ka
f ′

f ′ .

Variables

zt1,t2f ,m,n = 1, if flight f leaves node m at time t1 and arrives at node n at time t2, and 0

otherwise, ∀f ∈ F , (m,n) ∈ Af , (t1, t2) ∈ T m,n
f .

ytf = 1, if the aircraft that operates flight f is ready for taking off at the beginning of

time t, and 0 otherwise, ∀f ∈ F , t ∈ T
kdf
f .

As previously mentioned, our proposal extends the variables’ definition of Agustín

et al. [4] by including information about the time leaving the tail node. Actually, the

following relationship exists between variables:

xtf ,m,n =
∑

(t1,t2)∈T m,n
f :

t2≤t

zt1,t2f ,m,n ∀f ∈ F , (m,n) ∈ Af , t ∈ T̃ m,n
f .

Note also that the new variables are impulse variables (at time), instead of step ones

(by time). These two changes in the variables’ definition will result, as later exposed, in

a shortest path problem structure with limited shared resources.

Remark 1. We assume that for flights f ∈ Fp̄, the aircraft is always ready for departing at τdf

(i. e., y
τdf
f = 1), while for subsequent flights, the aircraft is not ready from the beginning, being

only available if the previous flight has arrived well in advance (i. e., y
τdf
f = 0,∀f ∈ F \Fp̄).

36 air traffic flow management problem

Example ATFM (continuation)

To illustrate how the new z-variables work, as well as how the new sets T m,n
f are com-

puted, we continue with the example employed in the previous section of the thesis.

Recall that the example was based on the situation depicted for flight f = 1 in Figure 1

(page 14), that a maximum departure delay of two periods was permitted, and that a

graph representation when defining the variables by arcs can be seen in Figure 4 (page

29). Using the time information exposed in the latter figure, sets T m,n
f are as follows:

T k1,k
out
1

1 = {(1, 1), (2, 2), (3, 3)} T k
out
1 ,w1

1 = {(1, 2), (2, 3), (3, 4)}

T w1,w2
1 = {(2, 3), (3, 4), (4, 5)} T w2,w3

1 = {(3, 4), (4, 5), (5, 6)}

T w1,w4
1 = {(2, 4), (3, 5), (4, 6)} T w4,w5

1 = {(4, 7), (4, 8), (5, 8), (5, 9),

T w5,w3
1 = {(7, 9), (7, 10), (8, 10), (6, 9), (6, 10)}

(8, 11), (9, 11), (9, 12), (10, 12), (10, 13)} T w3,kin
3

1 = {(4, 5), (5, 6), (6, 7), (9, 10),

T k
in
3 ,k3

1 = {(5, 5), (6, 6), (7, 7), (10, 10), (10, 11), (11, 12), (12, 13), (13, 14)}

(11, 11), (12, 12), (13, 13), (14, 14)}

Assuming that in the example the flight departs with one period of delay and that it

reaches its destination using the main route, the following variables would be equal to

one:

y11 y21 z2,2
1,k1,kout

1
z2,3
1,kout

1 ,w1

z3,41,w1,w2
z4,51,w2,w3

z5,6
1,w3,kin

3
z6,6
1,kin

3 ,k3
,

and all the rest would be equal to zero. Note that y21 = 1 due to the one period of

departure delay.

From the example, the following two properties of the variables become clearer:

1. Each z-variable contains all the information about the consequences of that vari-

able being equal to one: If it implies a speed change, the usage of an alternative

route or a late arrival/departure (in the case of airports). Therefore, as detailed

in Subsection 2.5.1, each modification of the flight plan can be penalized in a

non-linear way while keeping the model linear.

2.5 new mathematical formulation 37

2. By defining the variables as impulse variables, for each arc (m,n) in the solution,

only one of the corresponding variables is equal to one. That is, if (m,n) belongs

to the final route of flight f , then:∑
(t1,t2)∈T m,n

f

zt1,t2f ,m,n = 1.

Objective function

min
∑
f∈F

∑
(m,n)∈Af

∑
(t1,t2)∈T m,n

f

ct1,t2f ,m,nz
t1,t2
f ,m,n, (2.38)

Capacity constraints

∑
f∈F :

{kdf=k,t∈T
k
f }

zt,tf ,k,kout ≤ C
t,dep
k , ∀k ∈ K, t ∈ T , (2.39)

∑
f∈F :

{kaf=k,t∈T
k
f }

zt,t
f ,kin,k

≤ Ct,arr
k , ∀k ∈ K, t ∈ T , (2.40)

∑
f∈F :

{kdf=k,t∈T
k
f }

zt,tf ,k,kout +
∑
f∈F :

{kaf=k,t∈T
k
f }

zt,t
f ,kin,k

≤ Ctk, ∀k ∈ K, t ∈ T , (2.41)

∑
f∈F

∑
(m,n)∈Ajf

∑
(t1,t2)∈T m,n

f :
t1≤t<t2

zt1,t2f ,m,n ≤ C
t
j , ∀j ∈ J , t ∈ T . (2.42)

Flight structure constraints

y
τdf
f = 1, ∀f ∈ Fp̄, (2.43)

ytf = yt+1
f + zt,t

f ,kdf ,k
d,out
f

, ∀f ∈ Fp̄, t ∈ T
kdf
f \ {T

kdf
f }, (2.44)

ytf = zt,t
f ,kdf ,k

d,out
f

, ∀f ∈ Fp̄, t = T
kdf
f , (2.45)

y
τdf
f = 0, ∀f ∈ F \Fp̄, (2.46)

ytf +
∑

t′∈T t
f ′,f

zt
′,t′

f ′,ka,in
f ′ ,ka

f ′
= yt+1

f + zt,t
f ,kdf ,k

d,out
f

, ∀(f ′, f) ∈ Q, t ∈ T
kdf
f \ {T

kdf
f }, (2.47)

38 air traffic flow management problem

ytf +
∑

t′∈T t
f ′,f

zt
′,t′

f ′,ka,in
f ′ ,ka

f ′
= zt,t

f ,kdf ,k
d,out
f

, ∀(f ′, f) ∈ Q, t = T
kdf
f , (2.48)

∑
m∈Γ−f (n)

∑
(t′,t)∈T m,n

f

zt
′,t
f ,m,n =

∑
m′∈Γ+

f (n)

∑
(t,t′)∈T n,m

′
f

zt,t
′

f ,n,m′ ,

∀f ∈ F ,n ∈ Nf \ {kdf , kaf}, t ∈ T nf . (2.49)

Variables’ domain

zt1,t2f ,m,n ∈ {0, 1}, ∀f ∈ F , (m,n) ∈ Af , (t1, t2) ∈ T m,n
f , (2.50)

ytf ∈ {0, 1}, ∀f ∈ F , t ∈ T
kdf
f . (2.51)

In the model, the objective function (2.38) accounts for the operation costs, including de-

cisions about delays, rerouting or changes in the speed. Constraints (2.39)-(2.42) enforce

capacity limits in airports and sectors. Constraints (2.43) state that all flights without

a predecessor must have a ready-to-fly aircraft assigned since the scheduled departure

time. Constraints (2.44) state that if a flight has its aircraft ready at time period t, then

it can be scheduled for departing at that time period or delayed an additional one. Con-

straints (2.45) force the flight to take off if its aircraft is still ready at the beginning of the

last time period it can depart. Constraints (2.46) state that a flight with a predecessor

does not have its own aircraft ready to depart at the scheduled departure time (since

it is operated by the same aircraft as its predecessor, see Remark 1). Constraints (2.47)

and (2.48) are similar to constraints (2.44) and (2.45), but for flight f with a predecessor

f ′. In these cases, the right-hand side of each restriction takes into account that flight

f can depart (or be delayed one additional time period) at time period t if its aircraft

is ready from the previous time period (ytf = 1) or its predecessor flight f ′ has arrived

well enough in advance (
∑

t′∈T t
f ′,f

zt
′,t′

f ′,ka,in
f ′ ,ka

f ′
= 1). Constraints (2.49) guarantee that once

the aircraft reaches waypoint n, then it leaves it at the same time period.

2.5.1 Cost analysis in the objective function

The priority aim of ATFM models is to find flight plans such that the capacity of the dif-

ferent elements (airports and sectors) is never exceeded. This is achieved by proposing

a set of constraints that adequately define a feasible region. Moreover, objective func-

tion coefficients should be oriented towards choosing a solution which does not differ

2.5 new mathematical formulation 39

excessively from the initial flight plan and that, in addition, does so in the most bal-

anced possible way. The solutions that are sought must: 1) Prefer ground delays to air

delays; 2) Propose speed changes as smooth as possible; 3) Propose alternative routes

when the original route is not available; and 4) Penalize late arrivals. In addition, these

proposals should be such that changes are fairly distributed between different flights

(for example, a solution in which two flights have a delay of one period is preferable

to a solution in which a single flight concentrates two periods of delay). One of the

advantages of the proposed model over previous ones in the literature, e. g., Bertsimas

et al. [20] or Agustín et al. [4], is precisely the flexibility to fix the coefficients in the

objective function in order to take these facts into account.

Notice that, since each variable zt1,t2f ,m,n contains information about the time leaving

the tail node m and reaching the head node n, these variables determine the speed at

which the aircraft traverses arc (m,n). This implies that we can penalize changes in the

speed in a non-linear way, which is what happens in reality. To better understand this,

consider the following example. Let us consider two aircraft, one flying from node m to

node n, and another flying from m′ to n′. Imagine that the scheduled travel time for the

first route is 20 minutes, while the second one is 25 minutes. Now consider that both

aircraft must be delayed 5 minutes in their respective routes. If we penalized delays

based on this quantity (as the current state of the art does), both cases would have the

same cost even though they should not because the first case requires a reduction in

the speed of 25%, while in the second requires one of 20%. Thanks to our variables we

know the percentage of reduction beforehand, so we can establish penalizations based

on this non-linear quantity while maintaining linearity in our model. As far as we

know, the only work which also incorporates this idea of non-linear speed penalization

is Akgunduz et al. [8].

We have considered the following penalization structure. Let us consider varaible

zt1,t2f ,m,n. If this variable takes value 1, then the corresponding flight leaves waypoint m at

time period t1 and reaches waypoint n at time period t2. The penalization ct1,t2f ,m,n is such

that:

• If m = kdf (ground delay penalization), we use, based on Bertsimas et al. [20],

ct,t
f ,kdf ,k

d,out
f

= cg|t− τdf |1+ε1 , where cg is a constant to penalize ground delays. For

0 < ε1 < 1 this is a convex and superlinear penalization, looking for a better

distribution of the delays between several flights (the penalization is greater for

one flight delayed two periods than for two flights delayed one period each).

40 air traffic flow management problem

• If n = kaf (arrival delay penalization): ct,t
f ,ka,inf ,kaf

= ca|t − τaf |1+ε2 , where ca is a

constant to penalize air delays. As in the previous case, this penalization seeks to

distribute small delays in arrivals among several flights as opposed to concentrat-

ing large delays on a few flights.

• In all other cases (airspace arcs): ct1,t2f ,m,n = cr(t2 − t1) + cv
∣∣ t2−t1−`m,n

`m,n

∣∣1+ε3 . This

penalization includes several elements:

– cr is a constant to penalize the use of arcs which do not belong to the main

route. Therefore, cr = 0 for arcs in the main route and cr > 0 for the rest.

Notice that by multiplying this quantity by (t2 − t1) the time spent in the

alternative route is taken into account.

– As in the departure and arrival delay penalization, ε3 seeks to penalize the

concentration of speed changes in a few arcs.

– By dividing by `m,n, the length of the arc is also taken into account: the less

the scheduled time to cross an arc, the greater the penalization for chang-

ing the flight time one unit. That is, greater velocity changes have a greater

penalization.

– Finally, cv is a constant to penalize speed changes.

Note that, while penalization for delays in arrivals and departures are common in

the literature, penalization at intermediate points is not straightforward. In fact,

very few works consider it. In particular, Agustín et al. [4] penalize deviations in

the arrivals at each waypoint using a linear function, but without considering the

length of the arc (they do not penalize the change in speed, but the delay in the

arrival at the waypoints).

In general, since ground delays are preferred to air delays, it seems to be recommend-

able to set cg < cv. Figure 5 shows the impact of different values of the ε parameter.

The picture at the top represents the penalization assigned to departure and arrival de-

lays for cg = ca = 1. The picture at the bottom represents the penalization assigned to

the increment in the time spent (velocity change) for a flight in traversing an arc, for

`f ,m,n = 2, cr = 0 and cv = 1. Note that ε = 0 corresponds to the linear case.

2.5 new mathematical formulation 41

pe
na

liz
at

io
n

time periods of delay

2

4

8

12

16

0 1 2 3 4 5

ε = 0.00

ε = 0.25

ε = 0.50

ε = 0.75

Departure/arrival delay

pe
na

liz
at

io
n

time increment

2

4

8

12

16

0 1 2 3 4 5

ε = 0.00
ε = 0.25

ε = 0.50
ε = 0.75

Arc’s traversing time increment
(`f ,m,n = 2, cv = 2, cr = 0)

Figure 5: Illustration of the penalization functions.

2.5.2 Model extension

Usually, sectors are defined taking into account the maximum number of flights that

air traffic controllers working in a single sector can safely manage. Initially, the airspace

is divided into the so-called elementary sectors, which can be assembled into larger

units called collapsed sectors. A partition of the entire airspace, defined by a specific

combination of elementary and/or collapsed sectors, is called sector configuration (see

Baumgartner [12]). Therefore, along the planning horizon, different sector configura-

tions can be used in order to adapt the nominal capacity of the sectors to the expected

air traffic demand. Unlike previous models in the literature that use a fixed sector con-

figuration during the whole planning horizon, the model that we present here allows

for a dynamic one.

This is because our model considers flight routes as sequences of waypoints not nec-

essarily associated with air sector boundaries (some of them can lie in the interior),

making the flight structure independent of the air sector configuration. As an example,

42 air traffic flow management problem

let us suppose that in the instance illustrated in Figure 1, instead of having a static

airspace division in four air sectors, {I, II, III, IV}, the Air Traffic Control service consid-

ers that, from a given time period t∗, sector II must be split into two different sectors,

say IIa and IIb (see Fig. 6). Then, the set of sectors is J ={I, II, IIa, IIb, III, IV} that is

not a partition of the airspace. But considering Jt={I, II, III, IV} for t < t∗ and Jt={I, IIa,

IIb, III, IV} for t ≥ t∗, Jt defines a sector configuration for each t. Now, w2 is an exit

waypoint from sector IIa and an entering point to sector IIb.

k1

k2

k3

I II

III IV

Jt = {I, II, III, IV }

kout
1

kin
2 kout

2

kin
3

w1 w2 w3

w4 w5

w6
w7

w8

k1

k2

k3

I IIa IIb

III IV

Jt = {I, IIa, IIb, III, IV }

kout
1

kin
2 kout

2

kin
3

w1 w2 w3

w4 w5

w6
w7

w8

Figure 6: Illustration of dynamic sector configuration.

2.6 alternative formulation

Model (2.38)–(2.51), thanks to indexing the z-variables by arcs (m,n) ∈ Af and by

the time leaving m and reaching n, allows to represent the flight plans using a time-

2.6 alternative formulation 43

expanded or 4D-network. That is, a network G̃ = (Ñ , Ã), where each node n ∈ Ñ
represents a position in space and a time period in which that position can be reached;

and where each arc a ∈ Ã corresponds to a particular decision variable with a cost

associated.

For instance, for a given flight f , graph Gf = (Af ,Nf), shown4 in Figure 7, represents

the set of two available routes that f can follow departing from airport k1 to airport k3.

k1 ko1 w1 w2 w3 ki3 k3

w4 w5

(0, 0, 0) (1, 1, 2) (1, 2, 3) (1, 1, 2) (1, 1, 1) (0, 0, 0)

(1, 1, 1)

(2, 2, 3)

(1, 2, 2)

m n
(`f ,m,n, `f ,m,n, `f ,m,n)

Figure 7: Example of 3D flight plan.

The figure shows, for each arc, the minimum, the scheduled and the maximum num-

ber of time periods that flight f needs for traversing it. Using this information and

considering that, for example, the flight is scheduled to take off at t = 1 and that

the maximum ground delay is one time period, it is possible to build the 4D-network

G̃f = (Ñf , Ãf) represented in Figure 8. In that network, each circled-node nt ∈ Ñf is

the result of combining each node n ∈ Nf with the possible time periods to reach it,

t ∈ T nf .

There exists an arc from node mt1 to node nt2 in the following two cases:

• If m 6= n and it is feasible for flight f to go from node m ∈ Nf to node n ∈ Nf ,

departing at t1 and arriving at t2. It is not difficult to see that there is a one-to-one

correspondence between the arcs Ãf of this form and the z-variables in model

(2.38)–(2.51). To be specific, arc (mt1,nt2) is associated with variable zt1,t2f ,m,n, for all

(m,n) ∈ Af , (t1, t2) ∈ T m,n
f .

• If m = n = kdf , t1 ∈ T
kdf
f \ {T

kdf
f } and t2 = t1+ 1. Each of these arcs (the vertical one

in the figure) represent a one-time period ground delay for the flight. Notice that

there is also a one-to-one correspondence between these arcs and the y-variables

4 Due to aesthetic reasons, when drawing the text inside the nodes, instead of using kout
1 and kin

3 , we will

use ko1 and ki3 respectively.

44 air traffic flow management problem

k11 ko11 w12 w23 w34 ki35 k35

k12 ko12 w13 w24 w35 ki36 k36

w14 w25 w36 ki37 k37

w26 w37 ki38 k38

w27 w38 ki39 k39

w39 ki310 k310

w310 ki311 k311 n`w43

w44

w45

w55

w56

w57

w58

Figure 8: 4D-network example.

in model (2.38)–(2.51): when delayed, the aircraft is ready at the beginning of next

time period.

In Figure 8, it can also be appreciated that the network includes the (auxiliary) dia-

mond node n`, which represents the end of aircraft operations and which is linked to

every arrival airport node by double-line arcs. These arcs have no decision variables

associated.

Note that there is a one-to-one correspondence between each possible flight plan in

the example and each path of the 4D-network from k11 (in general, kdfτ
d
f) to n`. In

particular, the initial scheduled plan is represented using bold red arcs in Figure 8.

Regarding costs, since each non-dashed arc in Ãf has a correspondence with a de-

cision variable in model (2.38)–(2.51), a cost c̃a for each arc a = (mt1,nt2) ∈ Ãf is

assigned such that c̃a = ct1,t2f ,m,n, (m,n) ∈ Af , (t1, t2) ∈ T m,n
f . The cost for the double-line

arcs is set to 0. As a result, the shortest path from k1, 1 to n` represents the cheapest

(presumably the original) flight plan for flight f .

2.6 alternative formulation 45

First flight network Second flight network

k11 ko11

k12 ko12
· · ·

ki25

ki26

ki27

ki28

k25

k26

k27

k28

k26

k27

k28

k29

ko26

ko27

ko28

ko29

· · ·

ki310

ki311

ki312

ki313

ki314

k310

k311

k312

k313

k314 n`

Figure 9: 4D-network for two continued flights.

The 4D-network can be extended to cases where an aircraft operates several continued

flights. This is done by defining for each aircraft, instead of flight, a network G̃s =

(Ñs, Ãs), where s ∈ S = {1, . . . , |S|} stands for the s-th aircraft.

For the sake of illustration, let us consider the example of two continued flights

(τf ′,f = 1) depicted in Figure 9. There, the nodes and arcs defining each flight remain

as in the one-flight 4D-network. The connection between the two flights is done by

introducing new double-line arcs representing the transition from the first flight to the

second one. Concretely, if t is the first time period at which the second flight, f , can

depart from kdf given the arrival of the first flight, f ′, at time t′ to airport kaf ′ , then nodes

kaf ′t
′ and kdf t are linked. That is, (kaf ′t

′, kdf t) ∈ Ãs, ∀ kdf t ∈ Ñf , t′ ∈ T tf ′,f and kaf ′t
′ ∈ Ñf ′ .

Note that as these new double-line arcs do not represent any decision, they do not

have any variable associated. In fact, the 4D-network can be shrunk by merging every

set of nodes connected by these double-line arcs into just one node. In Figure 9, as in

the one-flight 4D-network case, each path from k11 to n` represents a specific flight plan

for the set of flights operated by the aircraft.

From the previous figures, it is clear that by using this representation based on the

4D-networks G̃s = (Ñs, Ãs), s ∈ S , the ATFMRP can be formulated as a shortest path

problem in multiple networks (one per each aircraft s ∈ S) with limited shared re-

sources (capacity constraints). To that end, let us introduce the following notation:

Fs, set of flights f that belong to network G̃s, s ∈ S, f ∈ F . Notice that {Fs|s ∈ S}
defines a partition of F . Note also that there exists a unique first flight fs0 ∈ Fs∩Fp̄
and a unique last flight f s` ∈ Fs operated by aircraft s.

46 air traffic flow management problem

Ãdep
s,k,t = {(kt, k

outt) ∈ Ãs| f ∈ Fs : k = kdf , (t, t) ∈ T
k,kout

f }, set of arcs referred to time

period t which represent the departure from airport k in the s-th network, s ∈ S ,

k ∈ K, t ∈ T .

Ãarri
s,k,t = {(kint, kt) ∈ Ãs| f ∈ Fs : k = kaf , (t, t) ∈ T

kin,k
f }, set of arcs referred to time pe-

riod t which represent the arrival at airport k in the s-th network, s ∈ S, k ∈ K,

t ∈ T .

Ãsec
s,j,t = {(mt1,nt2) ∈ Ãs| f ∈ Fs : (m,n) ∈ Ajf , (t1, t2) ∈ T m,n

f : t1 ≤ t < t2}, set of

arcs referred to time period t which belong to sector j in the s-th network, s ∈ S ,

j ∈ J , t ∈ T .

Thus, the ATFMRP admits the following formulation:

min
∑
s∈S

∑
a∈Ãs

c̃s,aρs,a, (2.52)

subject to:

∑
a∈Λ−(n)

ρs,a −
∑

a∈Λ+(n)

ρs,a =

1, if n = kdfs0

τdfs0
,

−1, if n = ns` ,

0, otherwise.

∀s ∈ S,n ∈ Ñs (2.53)

∑
s∈S

∑
a∈Ãdep

s,k,t

ρs,a ≤ C
t,dep
k , ∀k ∈ K, t ∈ T , (2.54)

∑
s∈S

∑
a∈Ãarri

s,k,t

ρs,a ≤ Ct,arr
k , ∀k ∈ K, t ∈ T , (2.55)

∑
s∈S

∑
a1∈Ãarri

s,k,t

ρs,a1 +
∑
s∈S

∑
a2∈Ã

dep
s,k,t

ρs,a2 ≤ Ctk, ∀k ∈ K, t ∈ T , (2.56)

∑
s∈S

∑
a∈Ãsec

s,j,t

ρs,a ≤ Ctj , ∀j ∈ J , t ∈ T , (2.57)

ρs,a ∈ {0, 1}, ∀s ∈ S, a ∈ Ãs, (2.58)

where ρs,a is a binary variable that takes value 1 if arc a ∈ Ãs belongs to the solution

path in network s ∈ S and 0 otherwise, and Λ−(n) and Λ+(n) are the sets of outgoing

and incoming arcs for node n ∈ Ñs, respectively.

2.7 graph of conflicts 47

Proposition 1. Models (2.38)–(2.51) and (2.52)–(2.58) are equivalent.

Proof. The proof follows straightforward from the network construction made before.

As a direct consequence, it can be concluded that the ATFMRP belongs to class

NP−complete. This is because the constrained shortest path problem is NP−complete

(Ahuja, Magnanti, and Orlin [6, Appx. B]). Furthermore, as the matrix associated with

constraints (2.53) is totally unimodular, the extreme points of the feasible region de-

fined by them are integer (Bertsimas and Tsitsiklis [18, Ch. 7]). As it will be shown in

Chapter 4, this fact leads to very tight Linear Programming (LP) relaxations, permitting

commercial Mix Integer Programming (MIP) solvers to solve fairly big instances of the

problem in a personal computer within reasonable computational times.

2.7 graph of conflicts

To reduce the size of the mathematical formulation, we propose a methodology based

on the construction of a conflict graph. By using this graph, the problem could even-

tually be split into disjoint subproblems to be solved independently. Furthermore, in

some cases, the size of the problem can be reduced by identifying when the main route

of a flight has no conflict with any other flight and, therefore, can be fixed and removed

from the problem.

The cornerstone of the proposal is that capacity constraints define potential conflicts

between aircraft: two aircraft may not be able to occupy the same sector/airport at the

same time. To be concrete, given two aircraft s, s′ ∈ S , we say that there is a potential

conflict between them if there is at least one arc in G̃s and one arc in G̃s′ with a non-zero

coefficient in the same capacity constraint.

We distinguish three types of conflicts between two aircraft: those involving the main

routes, those involving the main route of one aircraft and a secondary route of the other,

and those involving only secondary routes. We will represent these conflicts through a

multigraph H = (S,M), where S is the set of aircraft andM is the set of arcs such that

(s, s′) ∈ M if aircraft s and s′ are involved in a potential capacity conflict. In order to

use H for reducing the size of the problem, let us first introduce the following elements:

Ã∗s ⊆ Ãs, subset of arcs belonging to Ãs that define the main route, s ∈ S.

48 air traffic flow management problem

R, set of indexes of the capacity constraints. Note that if it can be proven, using some

preprocessing process, that a capacity constraint is redundant (i. e., the maximum

number of aircraft that can eventually be flying through the constraint’s associated

sector and time period is not greater than its capacity), then, the constraint index

can be removed from R.

Ãr, set of arcs in ∪s∈SÃs with non-zero coefficients in constraint r ∈ R.

The set of arcs M is the union of three disjoint sets: M1,1, M1,2 and M2,2, which

represent each of the three types of conflicts considered:

M1,1, arcs connecting two aircraft (nodes) that have at least one conflict in their main

routes. Formally, (s, s′), (s′, s) ∈ M1,1 ⇔ ∃r ∈ R such that Ãr ∩ Ã∗s 6= ∅ and

Ãr ∩ Ã∗s′ 6= ∅, for s, s′ ∈ S, s 6= s′.

M1,2, arcs connecting two aircraft that have at least one conflict between the main route

of the first of them and an alternative route of the second one. Mathematically,

(s, s′) ∈ M1,2 ⇔ ∃r ∈ R such that Ãr ∩ Ã∗s 6= ∅ and Ãr ∩ (Ãs′ \ Ã∗s′) 6= ∅, for

s, s′ ∈ S, s 6= s′. Note that in general (s, s′)⇔/ (s′, s).

M2,2, arcs connecting two aircraft that have at least one conflict in their alternative

routes. Mathematically, (s, s′), (s′, s) ∈M2,2 ⇔ ∃r ∈ R such that Ãr ∩ (Ãs \ Ã∗s) 6=
∅ and Ãr ∩ (Ãs′ \ Ã∗s′) 6= ∅, for s, s′ ∈ S, s 6= s′.

To decompose the original problem into independent subproblems and/or reduce its

size by using the multigraph of conflicts, we use the following result.

Proposition 2. LetH = (S,M) be the multigraph of conflicts associated with a given ATFMRP

problem. Then:

(i) Model (2.52)–(2.58) can be solved by optimizing as many independent subproblems as

connected components there are in H; each subproblem formed by the 4D-networks of the

aircraft conforming the component.

(ii) For each singleton connected component of H, the main route of all flights operated by the

associated aircraft is part of the optimal solution.

(iii) If for an aircraft s ∈ S, @s′ ∈ S : (s, s′) ∈M1,1 and (s, s′) ∈M1,2, then the main route

of all flights operated by s is part of the optimal solution.

2.7 graph of conflicts 49

(iv) If for a connected component of H @s, s′ ∈ S : (s, s′) ∈M1,1, then the main routes of all

flights operated by the aircraft of that component are part of the optimal solution.

Proof. The proof is straightforward taking into account that only capacity constraints

(2.54)–(2.57) have non-zero coefficients in more than one aircraft. Thus, by construction,

if two aircraft belong to different connected components, none of the flights operated

by these aircraft can use the same sector/airport at the same time period in any of

their feasible 4D-routes. Consequently, (i) and (ii) hold. By construction, if condition

(iii) holds, the main route of aircraft s is free of conflicts and, thus, it can be used in

the optimal solution. Condition (iv) is very restrictive since it implies that there is no

conflict between the main routes of the aircraft forming the component. In such a case,

it is impossible that there exists a violation of capacity constraints when the flights are

using their main routes and, therefore, the main route of all the involved flights can be

included in the optimal solution.

We conclude the chapter by pointing out to the reader that a computational experi-

ence to discuss the empirical behavior of the proposals made in this chapter will be

presented in Chapter 4. There it will be shown how the formulations proposed, in addi-

tion to the modeling advantages exposed in this chapter, allows commercial MIP solvers

to tackle ATFM instances up to a certain size in times that are feasible for the industry.

3
S H A R E D R E S O U R C E C O N S T R A I N E D

M U LT I - S H O RT E S T PAT H P R O B L E M

Motivated by the 4D-network ATFM formulation presented before, this chapter intro-

duces a new family of constrained shortest path problems that, as far as we know, has

not been previously addressed in literature: the Shared Resource Constrained Multi-

Shortest Path Problem (SRC-MSPP). In addition to its mathematical formulation and

characteristics, in the chapter it is shown how the SRC-MSPP permits to model project

scheduling problems where the activities of the projects are sequenced in serial, and

multiple extensions are considered at the same time (e.g., lag times, different execution

modes, etc). The chapter also includes two different solution methods for the SRC-

MSPP. The first one is a matheuristic algorithm designed to take advantage of the mod-

ern computer architecture with multiple cores. The algorithm consists of three phases: 1)

Generation of feasible solutions, 2) Combination of solutions, and 3) Solution improve-

ment. The second solution method studied consists of two Lagrangian Relaxations for

the SRC-MSPP. The first one is based on dualizing the capacity constraints existing in

the problem, and the second one on dualizing a copy of the decision variables. Most of

the content exposed in this chapter was developed in collaboration with prof. Manuel

Laguna during an internship and can be found in García-Heredia, Molina, Laguna, and

Alonso-Ayuso [54].

51

52 shared resource constrained multi-shortest path problem

3.1 introduction

The Shortest Path Problem (SPP) is very well known in the Operations Research lit-

erature. The goal is to find the minimum-cost path connecting an origin node and a

destination node in a network. The variety of applications is what makes this prob-

lem relevant. Applications range from computing the best route in GPS navigators, to

obtaining minimum risk routes for hazmat shipments (Carotenuto, Giordani, and Ric-

ciardelli [24]), or routing protocols in IP networks (Pióro, Szentesi, Harmatos, Jüttner,

Gajowniczek, and Kozdrowski [104]). Moreover, it may also appear as a subproblem of

other optimization problems, e.g., in Air Traffic Flow Management as demonstrated in

this thesis.

The SPP is commonly solved with algorithms that have a polynomial-time complex-

ity such as Dijkstra’s (Dijkstra [39]) and Bellman-Ford (Bellman [15]). Particularly, in

directed acyclic networks, the SPP can be solved in a complexity that is linear in the

number of arcs by using the Bellman principle of optimality (Bellman [14]).

All this has propitiated the development of several extensions of the SPP to address

more complex situations. Some of these extensions are:

• The k-shortest path problem (Eppstein [48] and Yen [116]), where the goal is to

find the k paths of minimum cost between two nodes. An application of this

occurs in hazmat shipments.

• The multi-objective shortest path problem (Aneja and Nair [10], Guerriero and

Musmanno [67], and Raith and Ehrgott [105]), where the goal is to find efficient

(non-dominated) solutions according to more than one criterion. An application

of this occurs when trying to balance time and fuel consumption.

• The dynamic shortest path problem (Ahuja, Orlin, Pallottino, and Scutella [7] and

Chabini [25]), where properties such as the cost of each arc may change along

time. For example, shipping costs may vary throughout a day.

• The Resource Constrained Shortest Path Problem (RCSPP), where the consump-

tion of various resources is associated with each arc of the network. The objec-

tive is to find the Shortest Path (SP) connecting two nodes, while ensuring that

available resource quantities are not exceeded (Beasley and Christofides [13] and

Handler and Zang [72]).

3.1 introduction 53

The latter is one of the most studied extensions of the SPP. In addition to the straight-

forward application of finding the shortest path subject to time or fuel limits, the RCSPP

with one resource has been embedded as a pricing subproblem in column-generation

procedures for vehicle routing problems (see Chabrier [26] or Montoya, Guéret, Men-

doza, and Villegas [100]).

The RCSPP belongs to the NP−complete class (Ahuja et al. [6, Appx. B]) and it is

usually solved by means of specialized algorithms (see, for instance, Dumitrescu and

Boland [43], Garcia [56], Lozano and Medaglia [95] or Horváth and Kis [76]). The basic

idea behind these algorithms is to identify and prune dominated and infeasible paths in

order to reduce the size of the problem to be able to solve it via dynamic programming

or similar approaches.

In this chapter we address an extension of the RCSPP that, as far as we know, has not

appeared in the literature: the Shared Resource Constrained Multi-Shortest Path Prob-

lem (SRC-MSPP). The problem consists of finding, for each network within a collection,

a path between a given source (or origin) node and a given sink (or destination) node

that minimizes the total cost (the sum of costs of the arcs forming the paths), while not

exceeding a limit in the usage of a set of common resources shared by all networks.

This extension is motivated by the results obtained in the previous chapter of the thesis

about ATFM.

The goal in this chapter is to formally describe and study the SRC-MSPP, present a

0−1 Mathematical Optimization model, show how it can be applied to some scheduling

problems (besides ATFM ones), and study different solution methods for it.

The motivation for the development of solution method for the SRC-MSPP is that

exact mathematical programming solvers are not able to solve instances of the size

found in practice and that, as we discuss in Subsection 3.2.4, it is not possible to simply

apply the solution methods available in the literature that have been developed for the

resource constrained shortest path problem.

Applications of the SRC-MSPP include the aforementioned ATFM problem, or the

train rescheduling problem (Josyula, Törnquist Krasemann, and Lundberg [82] and

Törnquist [109, 110]). Actually, we noticed that this type of scheduling problems cor-

respond to project scheduling problems (Hartmann and Briskorn [74]) with all the ac-

tivities sequenced in serial, but with multiple extensions included at the same time

(see discussion in Subsection 3.2.5), which is not customary in the literature of project

scheduling problems.

54 shared resource constrained multi-shortest path problem

3.2 problem description

Before formally formulating the SRC-MSPP, we introduce notation and mathematical

formulations for the SPP and RCSPP.

3.2.1 Notation

Sets

S = {1, . . . , |S|}, set of index for the networks considered in the problem.

Ns, set of nodes of the s-th network, s ∈ S.

As, set of arcs of the s-th network, s ∈ S.

Cs, set costs of the s-th network such that, for each arc a = (m,n) ∈ As, ca ∈ Cs
represents the cost of using arc a to go from node m ∈ Ns to node n ∈ Ns, s ∈ S.

Gs = (Ns,As, Cs), s-th network1 of the problem, s ∈ S.

GS = {Gs}s∈S , set of networks in the problem.

Λ+
s (n),Λ−s (n), set of incoming and outgoing arcs, respectively, of node n ∈ Ns, s ∈ S.

R, set of constrained resources.

Parameters

os, ds, origin (or source) and destination (or sink) nodes, respectively, of the s-th net-

work, os, ds ∈ Ns, s ∈ S.

qra, consumption of resource r ∈ R by arc a ∈ {As}s∈S .

W r, availability of resource r ∈ R.

Variables

xa = 1, if arc a ∈ {As}s∈S is part of the solution, and 0 otherwise.

1 In this chapter, we use G instead of G̃ to denote networks.

3.2 problem description 55

3.2.2 Preliminaries: Shortest Path Problem and Resource Constrained Shortest Path Problem

For the sake of clarity and future comparison, we first expose the IP formulations of

the shortest path problem and resource constrained shortest path problem. For the SPP,

this is shown below2.

min
∑
a∈A

caxa, (3.1)

subject to:

∑
a∈Λ−(n)

xa −
∑

a∈Λ+(n)

xa =

1, if n = o,

−1, if n = d,

0, otherwise.

∀n ∈ N (3.2)

xa ∈ {0, 1} ∀a ∈ A. (3.3)

In this formulation, (3.1) establishes the objective of minimizing the cost of the arcs

selected, while (3.2) are the classical flow conservation constraints which guarantee that

the arcs in the solution form a path from o to d.

As an example, consider the network shown in Figure 10, where below each arc is

represented its associated cost. In the network, the shortest path from o to d is indicated

with bold red arcs, and it has a total cost of 5 units.

o

d

1

2

0

2

4

1

4

0

3

1

2

1

1

2

2

2

m n
ca

Figure 10: Illustrative example of the Shortest Path Problem.

2 Note that as both problems, the SPP and RCSPP, deal only with one network, the subscript s employed

when defining notation in the previous subsection is not needed.

56 shared resource constrained multi-shortest path problem

The IP formulation of the RCSPP is obtained by adding to model (3.1)-(3.3) the fol-

lowing capacity (knapsack) constraints:∑
a∈A

qraxa ≤W r, ∀r ∈ R. (3.4)

To illustrate the RCSPP, consider the SPP example exposed before, but now, with each

arc consuming capacity from one limited resource. Assume that the availability of this

resource is 22 units. This new situation, together with the arcs resource consumption,

is depicted in Figure 11. From the data exposed in the figure, it is clear that the SP

obtained for the example in Figure 10, when there was no resource limit, is no longer

feasible (it has a cost of 5 and a resource consumption of 24 units). The optimal solution

for this RCSPP example (shown with bold red arcs in the figure), has a cost of 7 and a

resource consumption of 21 units.

o

d

(1,4)

(2,2)

(0,5)

(2,2)

(4,1)

(1,4)

(4,1)

(0,5)

(3,1)
(1,2)

(2,2)

(1,4)

(1,1)

(2,2)

(2,2)

(2,2)
m n

(ca, qa)

Figure 11: Illustrative example of the Resource Constrained Shortest Path Problem.

3.2.3 Mathematical formulation

The goal in the SRC-MSPP is to find for each network in GS a path between a given

source node os and a given sink node ds, s ∈ S , that minimizes the overall cost while

not exceeding the capacity of a set of resources shared by all networks. The problem

can be formulated as an integer program as follows:

3.2 problem description 57

min
∑
s∈S

∑
a∈As

caxa, (3.5)

subject to:

∑
a∈Λ−n (n)

xa −
∑

a∈Λ+
n (n)

xa =

1, if n = os,

−1, if n = ds,

0, otherwise.

∀s ∈ S,n ∈ Ns (3.6)

∑
s∈S

∑
a∈As

qraxa ≤W r ∀r ∈ R, (3.7)

xa ∈ {0, 1}, ∀s ∈ S, a ∈ As. (3.8)

The objective function (3.5) minimizes the cost of the arcs in the solution. Equations

(3.6) are the flow conservation constraints for each network. These guarantee that the

arcs in the solution of each network form a path from origin to destination. Constraints

(3.7) enforce the resource limits. The model finishes with the integrality constraints (3.8).

3.2.4 Key features

We now highlight the main features of the shared resource constrained multi-shortest

path problem, while pointing out the differences with the resource constrained shortest

path problem.

First of all notice that in contrast to the RCSPP, where the arcs in a single path com-

pete for a set of available resources, in the SRC-MSPP, the arcs in paths from multiple

networks must share the constrained set of resources (see constraints (3.7)).

In second place, the structure of the solutions is also different. In the RCSPP, a solu-

tion (i.e., a single path) is infeasible when, for one or more resources, it consumes more

than what is available. That is, the feasibility of a path depends only on the arcs in the

path and it can be detected without any additional information (local conditions). By

contrast, while the path for each single network in a solution to the SRC-MSPP may

be feasible (local conditions), the entire solution may not be feasible when considering

the aggregated resource consumption of all paths (global conditions). In other words,

instead of infeasible paths, SRC-MSPP deals with infeasible combinations of paths.

58 shared resource constrained multi-shortest path problem

To illustrate this point, consider the ATFM problem. Under typical circumstances, all

elements in a network have enough capacity to handle at least one aircraft. Therefore,

no route by itself is ever infeasible (local conditions). This means that a route cannot

be eliminated when considered in isolation. The feasibility of a route depends on other

routes in a chosen set. Therefore, there are certain route combinations that are feasible

and others that are infeasible.

Note that the SRC-MSPP formulation admits that each arc, when used, consumes

from all the available resources, i.e., qra > 0 , ∀s ∈ S, a ∈ As, r ∈ R. However, in real

applications of the SRC-MSPP (such as train rescheduling) this is not the case. In those

situations, each arc commonly represents an activity that to be completed requires from

a particular subset of resources, but not from all of them. That is, in practice, the situ-

ation for the SRC-MSPP is such that each arc of each network does not consume from

all the resources, but just from a subset.

To illustrate the characteristics of the SRC-MSPP, we elaborated an example based on

the situation exposed in Figure 12. There are two networks where each of the arcs is

accessing to two resources. Note that in the arcs, the resources consumed are indicated

by superscripts. So for instance, 4r1 means that the usage of the arc consumes 4 units of

resource r1. From the superscripts in the figure, it can be seen that in the example there

is a total of 5 resources: r1, . . . , r5. Assume that all the resources have a limit of 12 units,

i. e., W r = 12 ∀r ∈ {r1, . . . , r5}. In the figure, the optimal solution for each network

is shown with bold red arcs. For the top network the cost is 12, while for bottom one

is 6. That is, the optimal solution has a total cost of 18 units. Below it is shown the

desegregated resource consumption of the solution:

r1 :

top network︷ ︸︸ ︷
4+ 2 +

bottom network︷︸︸︷
4 = 10,

r2 :

top network︷ ︸︸ ︷
2+ 2 +

bottom network︷ ︸︸ ︷
3+ 5 = 12,

r3 :

top network︷ ︸︸ ︷
2+ 1 +

bottom network︷︸︸︷
2 = 5,

r4 :

top network︷ ︸︸ ︷
1+ 1+ 2+

bottom network︷ ︸︸ ︷
2+ 1 = 7,

r5 :

top network︷ ︸︸ ︷
1+ 2+ 1+

bottom network︷ ︸︸ ︷
1+ 2 = 7.

3.2 problem description 59

o

d

(1, 4r1 , 2r2)

(2, 2r1 , 2r2)

(0, 5r2 , 3r3)

(2, 2r1 , 2r3)

(4, 1r2 , 1r3)

(1, 4r4 , 3r5)

(4, 1r4 , 1r5)

(0, 3r2 , 5r4)

(3, 2r1 , 2r5)
(1, 2r1 , 2r3)

(2, 2r2 , 1r4)

(1, 4r3 , 2r5)

(1, 1r3 , 2r5)

(2, 2r1 , 2r5)

(2, 2r1 , 2r4)

(2, 2r4 , 1r5)

o d
(1, 4r1 , 3r2)

(3, 1r1 , 2r2)

(1, 3r1 , 4r3)

(2, 2r3 , 2r4)

(4, 1r2 , 1r3)

(1, 3r4 , 4r5)

(3, 1r4 , 1r5)

(3, 2r4 , 1r5)

(0, 5r2 , 2r5)

(1, 1r2 , 2r5)

m n
(ca, qra, q

r′
a)

Figure 12: Illustrative example of the Shared Resource Constrained Multi-Shortest Path Prob-

lem.

From the example, the following two aforementioned characteristics become clearer:

i) Any network’s route may be feasible when considered in isolation, but not (neces-

sarily) when combined with other networks’ routes, and ii) As happens in scheduling

problems, not all the arcs (activities) require from all the resources.

We conclude this subsection with two remarks. The first one is that, from the IP for-

mulation (3.5)–(3.8), it is clear that the ATFMRP formulated through time-expanded

networks (recall in Section 2.6) is a particular case where the SRC-MSPP arises in prac-

tice. In the following subsection we describe how the SRC-MSPP permits to model

other types of scheduling problems. The second remarks is that, as previously said,

the methods for the RCSPP are largely based on identifying and pruning dominated

and infeasible paths, instead of combinations of paths, which make them not applica-

ble to the problem addressed here. This, jointly with the fact that exact mathematical

programming solvers are not able to solve some instances of the size found in practice,

motivated us to study in the next section different solution methods for the SRC-MSPP.

60 shared resource constrained multi-shortest path problem

3.2.5 Application to project scheduling

The SRC-MSPP can be applied to solve resource-constrained project scheduling prob-

lems. In its simplest version (see Kolisch and Padman [89], Kolisch and Hartmann [88],

Hartmann and Briskorn [74] or Zheng and Wang [118]), the problem consists of find-

ing a schedule that minimizes the project’s completion time (i.e., the makespan), where

a project is characterized by a set of activities with precedence relationships and re-

source availability. A feasible schedule of activities is such that it does not violate the

precedence constraints and it does not consume more than the available resources.

Several extensions of this problem have been proposed in literature. For example,

Confessore, Giordani, and Rismondo [32], Gonçalves, Mendes, and Resende [66] or

Krüger and Scholl [90] address the problem with multiple projects and common re-

sources needs.

The multi-mode extension occurs when several executions modes are considered,

i.e., when the execution mode determines the resource requirements and completion

times. Examples of this extension can be found in Kuster, Jannach, and Friedrich [91]

or Kellenbrink and Helber [84], where the authors deal with an even more elaborate

multi-mode scheme in which the activities required to complete a project might change

(i.e., they are not fixed) and that the choice of modes is independent for each activity.

Lag times between activities have also been studied in project scheduling (Chassiakos

and Sakellaropoulos [28], Klein [86], and Klein and Scholl [87]). The existence of lag

times implies that, when one activity is finished, the following one has to wait some

time before starting being executed.

Extensions related to when activities can be executed have also been developed. This

has been studied considering time windows in which resources are not available (e.g.,

during holidays), as in Lu, Ren, Wang, and Zhu [96], and considering forbidden time pe-

riods in which activities cannot be executed, as in Drexl, Nissen, Patterson, and Salewski

[42]. As discussed by Hartmann and Briskorn [74], in contrast to time windows where

the availability of resources affects all activities, forbidden periods are particular to each

activity.

The basic characteristics of the project scheduling problems that can be modeled with

the SRC-MSPP are:

1. Multiple projects sharing resources whose availability might vary during the plan-

ning horizon.

3.2 problem description 61

2. The activities of the projects are sequenced in serial.

3. Each project has a starting time window and activities can only be scheduled

within a given time interval.

4. There is no idle time between activities, i.e., once an activity has been completed,

the following activity must start immediately.

We note, as discussed later on, that there are workarounds in order to apply SRC-

MSPP to a scheduling problem that does not conform with the last characteristic.

The following additional characteristics may also be considered:

1. Time lags.

2. Multi-modes associated with individual activities.

3. Flexibility in the type of objective function, e.g., minimize the makespan or the

sum of the cost of executing each activity on a given mode (Achuthan and Hard-

jawidjaja [1]).

We now discuss how the SRC-MSPP is capable of capturing the various characteristics

of these project scheduling problems and its extensions.

3.2.5.1 Modeling framework

Consider a set of projects, each of them consisting of a set of serial activities. A project

is completed once all its activities have been completed. Projects must be completed

within a planning horizon represented as a set of discrete time periods. Each project

must start within a time window and the duration of each activity has a minimum, a

scheduled, and a maximum number of periods. For each time period that an activity

is being processed, it consumes from a set of resources. Preemption of projects and

activities is not allowed, i.e., once a project or activity has started, it must be completed.

Idle time between activities can be modeled as dummy activities to be completed before

starting the next activity. Completing a dummy activity in no time represents the case

of not having considered the idle time option. Serial precedence relationships between

projects might exist, such that, for a given sequence of projects, a project cannot start

until the previous one has been fully completed.

The objective is to find a feasible schedule for all the activities included in the projects,

so they are completed at minimum cost while respecting resources’ capacity restrictions.

62 shared resource constrained multi-shortest path problem

Therefore, the problem is to determine the starting processing time of each project and

the processing speed of activities.

Since each project is made of a sequence of activities, it can be represented as a

directed graph where arcs correspond to activities and nodes represent start and com-

pletion events. Figure 13 shows an example of a 4-activity project represented as an

activity-on-arc graph, where node nã represents the completion of activity ã and the

three values below each arc represent the number of time periods for the minimum,

the scheduled, and the maximum duration of the activity. In this example, the four

activities are scheduled to be completed in 1, 2, 3, and 1 time periods.

n0 n1 n2 n3 n4
(1, 1, 2)

activity 1

(2, 2, 2)

activity 2

(3, 3, 4)

activity 3

(1, 1, 1)

activity 4

nã′ nã
(min, sched, max)

activity a

Figure 13: Example of a sequence of activities for a project.

The start time for each activity in a project can be derived from the possible start

times of the project and the possible duration of the activity. For instance, assume that

possible start times for the project in Figure 13 are {1, 2, 3}, then the possible start times

for each activity are:

{1, 2, 3}, {2, 3, 4, 5}, {4, . . . , 7}, {7, . . . , 11},

and the possible completion times for the project are {8, . . . , 12}.
An extended network is built by expanding each node in the original graph by the

possible start times of each activity. For instance, activity 1 in Figure 13 has three possi-

ble start times (i.e., 1, 2, and 3). Node n0 represents the start of activity 1. Therefore, the

extended network will have three nodes representing the three possible start times for

this activity (see nodes labeled (n0, 1), (n0, 2), and (n0, 3) in Figure 14). This is done for

all the nodes in the original network. Arcs in the extended network represent the possi-

ble activity duration. For instance, the arc from node (n0, 2) to node (n1, 4) represents

the case when activity 1 starts in period 2 and has a duration of two periods.

The extended network has an origin (o) and a destination (d) node. The origin node is

linked to every tail node of the first activity and the destination node is linked to every

head node of the last activity, as shown in Figure 14.

3.2 problem description 63

o n0, 1

n0, 2

n0, 3

n1, 2

n1, 3

n1, 4

n1, 5

n2, 4

n2, 5

n2, 6

n2, 7

n3, 7

n3, 8

n3, 9

n3, 10

n3, 11

n4, 8

n4, 9

n4, 10

n4, 11

n4, 12

d

Figure 14: Extended network for the project in Figure 13.

A feasible schedule for a project corresponds to a path from the origin to the desti-

nation in its associated extended network. A value can be assigned to each arc of the

extended network in such a way that it represents the cost of starting the activity in

the time period indicated in its tail node and finishing the activity in the time period

indicated in its head node. The resource unconstrained problem of finding the optimal

schedule of activities is equivalent to finding the shortest path in the extended network.

However, since in most settings, projects share resources, the constrained scheduling

problem for all projects can be solved as an instance of the SRC-MSPP.

As can be seen, the idea of transforming the graph of serial activities into an extended

network is equivalent to the transformation shown in Section 2.6 for the particular case

of ATFM. Thus, alternative sequences of activities can also be easily modeled.

From the previous discussion it is clear that the ATFM problem can be viewed as

a particular case of project scheduling problem. Let us specified this. In ATFM, each

aircraft, which may perform multiple continued flights, can be viewed as a project.

As multiple aircraft exist, the multiple project extension arises. For each aircraft, the

sequence of serial activities to schedule are the airports and sectors that the aircraft

has to reach/cross to carry out the flights that it has assigned. Recall that this route

schedule conforms what is called a flight plan. The decisions conforming a flight plan

are: the departure time (which is restricted to a time window), the usage of the main

route or an alternative one (alternative sequences of activities existing to complete the

project), the speed of the aircraft when traversing each air sector (execution modes), and

64 shared resource constrained multi-shortest path problem

the landing time (completion time of the project). Furthermore, each aircraft must cross

each sector within a given time interval (forbidden time periods, in project scheduling).

When an aircraft lands, there is a setup time between flights (turnaround time) that

can be equated to the lag time extension in project scheduling. Different objectives can

be considered, such as minimizing the cost of the routes or minimizing late landings.

Finally, sectors and airports conform the set of limited resources whose capacity may

change along time.

3.3 solution methods

We now introduce two solution methods for the shared resource constrained multi-

shortest path problem. The first one is matheuristic algorithm consisting of three phases:

1) Generation of feasible solutions, 2) Combination of solutions, and 3) Solution im-

provement. The second method consists of two Lagrangian Relaxations, one based on

dualizing the capacity constraints, and the other based on dualizing a copy of the deci-

sion variables.

3.3.1 Introduction to heuristic algorithms

Multiple problems in combinatorial optimization are cataloged as NP-complete or NP-

hard, meaning, from a practical point of view, that no polynomial-time algorithm is

known to solve them. Nowadays, however, software and hardware permit to solve

many instances of these problems to optimality (or nearly) using exact mathematical

programming methods (e.g., by means of MIP solvers).

Despite this good news, there are still multiple problem instances for which MIP

solvers fail to obtain a good solution in a feasible amount of time. For these situations,

heuristics algorithms are employed. Heuristics algorithms (see in Martí, Pardalos, and

Resende [98]), are solution methods oriented to find acceptable solutions in a reasonable

amount of time. As a drawback, heuristic methods generally do not find the optimal

solution, and they lack a procedure to prove optimality (Glover and Kochenberger [59]).

The cornerstone of heuristic optimization is the idea of local search, that is, given an

initial solution, explore a neighborhood of this solution (i. e., a subset of the space of

solutions) in such a way that a better solution is achieved. The procedure is repeated

until no further improvement is obtained.

3.3 solution methods 65

One of the inconveniences of heuristics algorithms is that they quickly get trapped in

local optimum leading to low-quality solutions. To avoid this early termination issue,

heuristics are usually embedded in a metaheuristic framework. From Sörensen and

Glover [107]: “A metaheuristic is a high-level problem-independent algorithmic framework that

provides a set of guidelines or strategies to develop heuristic optimization algorithms”. The

goal of a metaheuristic is to guide the local search in such a way that: 1) It balances

exploration and exploitation of the solution space, and 2) It is capable of escaping from

local optimum. Some the most famous and tested matheuristics are (see more in Glover

and Kochenberger [59] and Martí et al. [98]):

• Ant Colony Optimization (Dorigo [40], Dorigo, Maniezzo, and Colorni [41], and

López-Ibáñez, Stützle, and Dorigo [94]).

• Genetic Algorithms (García-Martínez, Rodriguez, and Lozano [55] and Holland

[75]).

• Tabu Search (Glover and Laguna [60] and Glover [62–64]).

• Variable Neighborhood Search (Hansen and Mladenović [73] and Mladenović and

Hansen [99]).

• Scatter Search (Glover [61, 65] and Laguna and Martí [92]).

• Simulated Annealing (Geman and Geman [57], Hajek [71], Kirkpatrick, Gelatt,

and Vecchi [85], and Nikolaev and Jacobson [101]).

Metaheuristics have been successfully applied to optimization problems, but the us-

age of one or another heavily depends on the problem to be solved (Wolpert and

Macready [114]).

Because of the good performance of exact and metaheuristic methods, a new family

of optimization algorithms based on a hybridization of both has arisen. These algo-

rithms are denoted as matheuristic algorithms. As exposed in Fischetti and Fischetti

[50], matheuristic algorithms are characterized by the central role of the mathematical

model, which is the cornerstone around which the heuristic is built. Just the opposite of

what happens in metaheuristics, where the mathematical model is disregard, or simply

used for illustrative purposed or performance comparison with exact methods.

Due to its nature, matheuristic algorithms have been developed for specific problems,

as usually do with metaheuristics (e.g., Billaut, Della Croce, and Grosso [21], Della

66 shared resource constrained multi-shortest path problem

Croce, Salassa, and T’kindt [37], Fanjul-Peyro, Perea, and Ruiz [49], and Toffolo, Santos,

Carvalho, and Soares [108]); and for becoming part of black-box solvers, as usually do

with exact methods (e.g., Danna, Rothberg, and Le Pape [36] and Fischetti and Lodi

[51]).

Matheuristic algorithms, as taking advantage of two perspectives, provide a powerful

and interesting framework for developing algorithms to tackle optimization problems.

In the matheuristic algorithm described in the next subsection, we employ a heuristic

search to generate feasible solutions, while exact methods are used to explore subre-

gions of the solution space that can improve the solutions.

3.3.2 Matheuristic algorithm

In this Subsection, we propose a three-phase matheuristic algorithm to solve the SRC-

MSPP. We first give an overview of the procedure and then introduce notation and

provide a detailed description of each phase.

In the first phase, a pool X = {X 1, . . . ,XK} of solutions is generated. A solution k

in the pool is represented as X k = {X ks }s∈S , where X ks ⊆ As is a set of arcs defining

a path from os to ds in network Gs. This phase attempts to generate solutions X k ∈ X
that are feasible with respect to the original model (3.5)-(3.8). However, as we discuss

below, the resulting pool may include some solutions that violate one or more capacity

constraints.

In the second phase, the solutions in X are combined to obtain new (and perhaps

better) feasible solutions, denoted by X II. This is done by solving the original IP model

(3.5)-(3.8) with the arcs in X . By construction, X II cannot be worse than the best feasible

solution in X .

The third phase applies a local search to X II. The local search attempts to close the

gap between the cost of each path in X II and its corresponding lower bound. The lower

bound for each network can be found by solving the resource constrained shortest

path problem. For instances of the SRC-MSPP for which all paths are feasible for an

individual network (e. g., in ATFM), the solution of the RCSPP is equivalent to the

solution of the SPP. Therefore, the lower bound for an individual network can be found

by solving the SPP instead of the RCSPP. The goal of the local search is to find improved

solutions, which tend to be those for which the gaps are balanced across all networks.

Solution X III denotes the outcome of the local search.

3.3 solution methods 67

Algorithm 1 shows a pseudo-code of the proposed procedure.

Algorithm 1 Matheuristic
1: function matHeuristic

2: X ← GeneratePool(GS ,R,maxIter,minIterIP ,maxNets, penalty,α,β,K);

3: X II ← SolutionCombination(GS ,R,X);

4: X III ← LocalSearch(GS ,R,X II, δ, γ);

5: return X III;

6: end function

Notation for the algorithm

Parameters

maxIter, maximum number of failed attempts to generate a feasible solution.

minIterIP , minimum number of failed attempts between calls to the IP solver. The IP

solver is used, as shown later, to help the heuristic to find feasible solutions.

maxNets, maximum number of networks with penalized arcs in the previous iteration

to consider using the IP solver.

penalty, value to penalize the usage of arcs contributing to solution infeasibility.

α, probability of penalizing a set of arcs that has been identified as contributing to the

solution infeasibility.

β, percentage of networks, whose arcs have not been penalized in the previous iteration,

that are fixed to their current paths when calling the IP solver.

K, number of solutions to generate in the first phase of the algorithm.

∆s, difference, for the s-th network, between its solution cost after the second phase of

the algorithm and its corresponding lower bound, s ∈ S.

δ, number of networks for which the algorithm tries to improve their solution in the

third phase. The networks with larger ∆s values are the ones to be improved.

γ, number of networks that the algorithm will use to trade resources with the δ net-

works above.

68 shared resource constrained multi-shortest path problem

Sets

X ks ⊆ As, set of arcs defining a path from os to ds in the s-th network for the k-th

solution generated, s ∈ S, k ∈ {1, . . . ,K}.

X k = {X ks }s∈S , k-th solution generated, k ∈ {1, . . . ,K}.

X = {X 1, . . . ,XK}, set of solutions generated in the first phase of the algorithm. For

analogy with other metaheuristics such as Scatter Search, we will refer to X as

pool instead of set.

X II , solution generated in the second phase of the algorithm.

X III , solution generated in the third and last phase of the algorithm.

XLB, lower-bound solution to the problem.

G∗s = (Vs,As, C∗s), s-th network of the problem with the set of costs different (due to the

penalization process of the algorithm) than the original network Gs, s ∈ S.

G∗S = {G∗s}s∈S , set of networks with modified costs in the problem. G∗s = Gs for those

networks whose costs have not been modified.

Ars ⊆ As, subset of arcs in network s ∈ S that use resource r ∈ R. Note that an arc may

belong to more than one Ars.

S∗ ⊆ S, network indexes with at least one penalized arc in the previous iteration.

Sβ, network indexes as described for parameter β above.

Sδ, network indexes as described for parameter δ above.

Sγ , network indexes as described for parameter γ above.

Example for the Algorithm

For the sake of clarity when exposing function GeneratePool, the most complicated one

in the algorithm, we elaborated an example based on the situation depicted in Figure 15.

There are 3 networks, where the bold red arcs indicate the shortest paths from o to d. In

the example, there is only one resource with capacity equal to 1, and the only arcs that

may access it are those indicated in the figure, i. e., a1, a2, a3, a4 and a5. In the example,

3.3 solution methods 69

o

d

Network 1

a1

a2

o d

Network 2

a3

o d

Network 3

a4

a5

Figure 15: Illustrative example of solving the SRC-MSPP with the algorithm (part I).

each arc consumes 1 unit of the resource. Therefore, the model will have the following

capacity constraint:

Network 1︷ ︸︸ ︷
xa1 + xa2 +

Network 2︷︸︸︷
xa3 +

Network 3︷ ︸︸ ︷
xa4 + xa5 ≤ 1. (3.9)

Note that the current SP solution is not feasible because the consumption of the limited

resource is 3 units (xa1 + xa3 + xa5). With this situation, let us described the algorithm

and how it would work for the example.

3.3.2.1 Phase I: The GeneratePool Function

The goal of the first phase of our procedure is to generate a pool of feasible solutions X .

The procedure (shown in Algorithm 2) starts with the solution of SPP3 (i.e., model (3.1)–

3 We tackle SRC-MSPP instances for which the W r values are such that no individual shortest path violates

the capacity constraints, making the RCSPP for each network equivalent to solving the SPP. Additionally,

70 shared resource constrained multi-shortest path problem

(3.3)) for each network (line 2). The total cost associated with the collection of all the

obtained shortest paths, X LB, is a lower bound for the original problem. If this collection

of shortest paths meets all the capacity constraints, then X LB is an optimal solution to

the original problem and the procedure terminates (lines 3–5). Otherwise (i.e., at least

one capacity constraint has been violated), a for-loop to generate K feasible solutions is

executed (lines 8–11). At each iteration of the loop, the FeasibleSol function attempts

to generate a feasible solution using X LB as a starting seed. This for-loop is amenable

to parallel execution in the presence of multiple cores because the calls to FeasibleSol

are independent. FeasibleSol is a non-deterministic iterative procedure that attempts

to create a feasible solution X k from a starting solution X LB that does not meet the

capacity constraints of the original model (3.5)-(3.8). Due to its non-deterministic nature,

it is expected that FeasibleSol will generate a different solution every time is called.

Algorithm 2 Generating pool X
1: function GeneratePool(GS ,R,maxIter,minIterIP ,maxNets, penalty,α,β,K)

2: X LB ← ShortestPath(GS);
3: feasible← CheckFeasibility(R,X LB);

4: if feasible == true then

5: X ← {X LB};
6: else

7: X ← ∅;
8: for k = 1, . . . ,K do

9: X k ← FeasibleSol(GS ,R,X LB,maxIter,minIterIP ,maxNets, penalty,α,β);

10: X ← X ∪ {X k};
11: end for

12: end if

13: return X ;

14: end function

Algorithm 3 shows the steps associated with the function that attempts to produce

a feasible solution from the collection of shortest paths X LB. The procedure identifies,

for the current solution, the arcs that are contributing to the infeasibility of the solution

and adds a penalty to the cost of a random subset of these arcs. Then, the SPP is solved

for each penalized network (denoted as G∗s), producing shortest paths that exclude most

or all of the penalized arcs. These steps are repeated in search of a feasible solution. If

this fails, a final attempt to find a feasible solution is made by way of solving a reduced

since the networks in our computational testing are acyclic, we solve the SPP using Bellman principle of

optimality.

3.3 solution methods 71

version of the original integer programming model. In this reduced version, some of

the arcs are fixed and only a subset of the arcs is included as decision variables in the

model. This step does not guarantee a feasible solution because the variable fixing may

render the model infeasible. The search for a feasible solution ends once one is found

or after a specified limit on the number of failed attempts. For reasons that will become

clear below, adding an infeasible solution to pool X is not an issue as long as the pool

contains at least one feasible solution.

Algorithm 3 Producing a feasible solution from X LB

1: function FeasibleSol(GS ,R,X ,maxIter,minIterIP ,maxNets, penalty,α,β)

2: ARS ←
{
Ars | s ∈ S, r ∈ R

}
;

3: G∗S ← GS ;

4: feasible← false;

5: nIter ← 0;

6: nIterIP ← minIterIP ;

7: while feasible == false & nIter ≤ maxIter do

8: S∗, G∗S , ARS ← PenalizeArcs(X ,G∗S ,R,A
R
S , penalty,α);

9: if S∗ == ∅ then

10: ARS ←
{
Ars | s ∈ S, r ∈ R

}
;

11: else

12: if |S∗| ≤ maxNets & nIterIP ≥ minIterIP then

13: X trial ← SolveIPModel(R,GS ,S∗,X ,β);
14: feasible← CheckFeasibility(R,X trial);
15: if feasible == true then

16: X ← X trial;
17: else

18: nIterIP ← 0;

19: end if

20: else

21: X ← ShortestPath(G∗S);
22: feasible← CheckFeasibility(R,X);
23: end if

24: end if

25: nIterIP ← nIterIP + 1;

26: nIter ← nIter+ 1;

27: end while

28: return X ;

29: end function

The FeasibleSol function takes as input the set of networks (GS), the set of resources

(R), the collection of shortest paths associated with the lower bound (X = X LB), the

72 shared resource constrained multi-shortest path problem

maximum number of failed attempts (maxIter), the number of failed attempts between

calls to the IP solver for the reduced model (minIterIP), maximum number of networks

with penalized arcs in the last iteration to consider using the IP solver (maxNets), the

penalty value (penalty), the probability of penalizing a set of arcs that has been iden-

tified as contributing to the solution infeasibility (α), and the percentage of networks,

whose arcs have not been penalized in the last iteration, that are fixed to their current

paths when calling the IP solver (β).

Lines 2–6 initialize the local elements of the FeasibleSol function. Let Ars ⊆ As be

the subset of arcs in network s that use resource r. We point out that an arc may belong

to more than one Ars. ARS contains the unpenalized subsets Ars. At the beginning, no

arc subsets have been penalized and therefore all arcs subsets are included in ARS . In

the example, ARS =
{
{a1, a2}, {a3}, {a4, a5}

}
. G∗S = {(Ns,As, C∗s)}s∈S consists of all the

penalized networks and starts as a copy of GS , indicating that at the beginning no

arcs have been penalized (i.e., C∗s = Cs). The feasible Boolean variable keeps track of

the feasibility of the solution obtained at the current iteration. The nIter counter is

the number of failed attempts to produce a feasible solution, and nIterIP counts the

number of failed attempts since the last time the IP model was executed.

After the initialization, a while-loop (lines 7–27) that attempts to create a feasible

solution out of the current X begins. In the first step of the loop, the PenalizeArcs

function (see pseudo-code and detailed description at the end of this Phase I exposition)

seeks to identify and penalize (using a non-deterministic procedure) subsets of arcs that

are contributing to infeasibility in the current solution. For that, PenalizeArcs creates

a list of resources for which their capacity is exceeded by the current solution. We will

refer to this as the list of infeasible resources. Then, for each resource r∗ in the list of

infeasible resources, the procedure loops through all networks and with probability α,

penalizes each unpenalized subset Ar∗s ∈ ARS if at least one arc in Ar∗s is also in X . The

subset penalization consists of adding a penalty value to the current cost of all arcs in

Ar∗s . That is, the penalization process is cumulative.

Note that some of the arcs in a penalized subset Ar∗s might not be in the current solu-

tion X . The reason for penalizing these inactive arcs is to decrease their attractiveness

in subsequent iterations, since their addition to the solution may cause a resource that

has been made feasible to become infeasible again. The penalization process may stop

before considering all subsets that use an infeasible resource. This happens when we

have penalized enough subsets that the sum of their resource requirements is at least

as large as the amount by which the resource is infeasible.

3.3 solution methods 73

PenalizeArcs returns the set of network indexes with at least one penalized arc in

the current iteration (S∗ ⊆ S), the set of networks with penalized costs (G∗S), and an

updated ARS set in which the penalized arc subsets have been removed. The latter is to

not penalize the same subsets Ars more than once and to foster diversity in the search.

Note that, since an arc can consume more than one resource, removing a subset does

not completely remove an arc. That is, an arc that has been penalized for consuming

one resource may belong to an unpenalized subset of another resource. Thus, an arc

can be penalized multiple times, one per infeasible constraint to which it belongs. The

algorithm allows penalizing an arc multiple times to further discourage the usage of

those arcs with the largest contribution to the infeasibility of the solution

In the example introduced before, this first part of the algorithm will work as follows.

As there is only one infeasible resource, the list of infeasible resources is formed by a

single element. For that resource, the next steps happen:

Step 1: Check conditions for penalizing arcs in Network 1:

1. Ar∗1 ∈ ARS ? That is, have the arcs in Network 1 (which can access to resource

r∗) not been penalized before for using r∗? If true, check the next condition;

else, go to the next step.

2. Is there at least one arc in Ar∗1 also in X ? That is, Is there at least one arc of

Network 1 consuming the resource and, therefore, contributing to infeasibil-

ity in constraint (3.9)? If true, continue; else, go to the next step.

In this case, both conditions are true, so arcs a1 and a2 are candidates to be pe-

nalized. Now the algorithm randomly decides if penalizing them or not. Consider

that it does. Then, both arcs are penalized and subset Ar∗1 is removed from ARS .

Now this set becomes ARS =
{
{a3}, {a4, a5}

}
.

Step 2: Check conditions for penalizing arcs in Network 2 as in the previous step. In

this case, both conditions hold again, so arc a3 is a candidate to be penalized.

Consider that at the random step the algorithm decides to penalize the arc. Then

arc a3 is penalized and subset Ar∗2 removed from ARS . After that, ARS =
{
{a4, a5}

}
Step 3: If the current penalized arcs (a1, a2 and a3) were no longer used after the pe-

nalization, the constraint would become feasible and penalizing more would be

counterproductive: We would discourage other networks from using their short-

est paths when unnecessary. Therefore, at this point, as specified in the algorithm

description, the penalization of this resource stops. Obviously, for the situation of

74 shared resource constrained multi-shortest path problem

the example, a3 will always be used (it is the only way for Network 2 to reach its

destination), so the early stopping does not have the desired effect. This situation

was shown on purpose in the example to illustrate that this stopping rule also has

a heuristic nature aiming at penalizing as few as possible.

Step 4: If there were more elements in the list of infeasible resources, the algorithm

would repeat the previous steps for them. As in the example there are not, this

first penalization round finishes. Note that for this iteration S∗ = {Network 1,

Network 2}.

Since PenalizeArcs removes penalized arc subsets from ARS after each iteration, a

point may be reached in which ARS is of a size that PenalizeArcs might return an empty

S∗ set. This can occur, for example, if just a few sets remain in ARS and the algorithm

decides (in the random step) to not penalize them. If this occurs, ARS is reset to include

all arcs (line 10). This is to avoid the algorithm getting trapped in an infeasible solution.

As long as S∗ is not empty, an attempt to find a feasible solution is made. The attempt

takes on two different forms. An exact method solves a reduced version of the integer

programming model (lines 12–20) or new shortest paths are found for the networks in

G∗S (lines 21–22). The exact method is used when the number of penalized networks is

small enough (i.e.: |S∗| ≤ maxNets) and the number of attempts to reach feasibility by

recomputing the shortest paths reaches minIterIP . The exact method solves a reduced

version of the original model (3.5)–(3.8) in which we fix a large percentage of the vari-

ables in the original problem. We start by selecting β% of the networks4 in S \ S∗. The

selection is made balancing solution quality (networks with worse objective function are

selected) and diversity (networks are selected at random). We alternate the use of these

two criteria. We denote this set as Sβ . Then, variables in the set {xa | a ∈ {As}s∈Sβ} are

fixed to 1 if a ∈ X , and to 0 otherwise. This means that the paths for the networks in

Sβ are fixed as dictated by the current solution. Therefore, the only variables in the re-

duced model are those associated with the arcs in {As}s∈S\Sβ . The reduced model uses

the original cost values for the objective function calculation and a resource availability

that is reduced by the resources requirements of the fixed variables.

4 In our original algorithmic design, we fixed all paths in networks without penalized arcs, i.e., all networks

in S \ S∗. However, this proved to be too restrictive, frequently making the reduced model infeasible. The

β parameter allows us to include some additional networks in the formulation and increase the flexibility

of the model.

3.3 solution methods 75

In the case of our example, after the penalization step, the SP would be recomputed.

The new resulting solution is shown with bold red arcs in Figure 16. There it can be seen

that the new solution is still infeasible, having only changed for Network 1. Note that if

a2 had not been penalized, the new shortest path of Network 1 might have included a2,

making that Network 1 continued contributing to infeasibility. Hence the importance of

penalizing subsets instead of individual arcs.

o

d

Network 1

a1

a2

o d

Network 2

a3

o d

Network 3

a4

a5

Figure 16: Illustrative example of solving the SRC-MSPP with the algorithm (part II).

After obtaining a new solution (by either of the methods described above), the proce-

dure checks for feasibility (lines 14 and 22). If the solution is feasible, then the procedure

ends and returns X . If the solution is not feasible, then the current solution changes only

if the SPP method was used to find it. That is, the current solution is not changed when

the IP model is used, but no feasible solution exists due to the variable fixing. The pro-

cess ends after maxIter failed attempts and it returns the current infeasible solution.

If the solution pool does not include any feasible solutions, then SolutionCombination

76 shared resource constrained multi-shortest path problem

function in Algorithm 1 might not return a feasible solution. The probability of observ-

ing this, however, decreases with the size of the solution pool. In fact, with the size

that we used in our computational experiences, the procedure never encountered this

situation.

For our example, given that the solution keeps being infeasible, the next iteration of

the while loop would be as follows.

Step 1: Penalization step. Because of the previous discussion, at this iteration only the

arcs of Network 3 are candidates to be penalized. Consider that at the random

step, the algorithm decides to penalize them. Then, a4 and a5 are penalized and

Ar∗3 is removed from ARS . Note that if the arcs of Network 3 had not been pe-

nalized, set ARS would have been reset at the next iteration because S∗ would be

empty.

Step 2: As S∗ = {Network 3} is not empty, the SP is recomputed. On this occasion, the

solution would be the same as in Figure 16, except for Network 3, which will

reach d using the arcs at the bottom of the network.

Step 3: As the new solution is feasible (only arc a3 consumes the resource), this call to

FeasibleSol ends.

Before describing additional elements of the proposed procedure, we would like to

make a brief comment on the use of the IP model to solve the reduced problem. Our

original design of the FeasibleSol function did not include this component. We added

it after preliminary computational experiences showed that, for small |S∗| values, feasi-

bility could be reached faster and with better solution quality by solving the reduced

problem instead of continuing to penalize arcs and finding the revised shortest paths.

In this design, the IP exact solver is meant to be invoked occasionally. That is, it is

not meant to be the first option. Therefore, the values of the maxNets and minIterIP

parameters must be chosen accordingly. The maxNets parameter controls the size of

the subproblem. Given that we are using an exact solver, we need to limit the size of

the model that we are asking the solver to tackle. The minIterIP parameter is a proxy

for directly monitoring the changes in S∗. Note that if the IP model fails to produce a

feasible solution with a particular S∗, it only makes sense to invoke it again after S∗

has experienced some changes. Instead of keeping track of the changes in S∗, we ex-

perimentally adjusted the value of minIterIP to allow the arc penalization function to

change the composition of S∗.

3.3 solution methods 77

Pseudo-code for function PenalizeArcs

To conclude this first phase of the algorithm, we show in Algorithm 4 the pseudocode

for function PenalizeArcs, employed before to identify and penalize subsets of arcs

that are contributing to infeasibility in the current solution.

Algorithm 4 Penalizing arcs contributing to infeasibility

1: function PenalizeArcs(X , G∗S , R, ARS , penalty, α)

2: S∗ ← ∅;
3: R∗ ← {r ∈ R |

∑
a∈X q

r
a −W r > 0};

4: for r ∈ R∗ do

5: total←
∑
a∈X q

r
a −W r ;

6: for s ∈ S do

7: if Ars ∈ ARS & Ars ∩X 6= ∅ then

8: if Rand() < α then

9: c∗a ← c∗a + penalty, ∀ a ∈ Ars, c∗a ∈ C∗n;

10: ARS ← A
R
S \ {A

r
s};

11: S∗ ← S∗ ∪ {s};
12: total← total−

∑
a∈Ars∩X q

r
a;

13: if total ≤ 0 then

14: break;

15: end if

16: end if

17: end if

18: end for

19: end for

20: return S∗, G∗S , ARS ;

21: end function

In the first two lines of the algorithm, S∗ will save the networks’ indexes whose arcs

are penalized, and R∗ is the set of resources whose capacity is exceeded by the current

solution.

Then, the algorithm loops for the elements inR∗ and S. In each loop r ∈ R∗, the local

variable total (line 5) represents the amount by which resource r is exceeded.

Ars is a candidate to be penalized if: 1) It has not been penalized in previous iterations

(Ars ∈ ARS), and 2) At least one of its arcs is in the current solution (Ars ∩X 6= ∅). If both

conditions hold, then subset Ars is penalized with probability α.

When penalizing, the cost of the arcs in Ars are increased by penalty (line 9), subset

Ars is removed from ARS , set S∗ is updated, and total is reduced by how much the

penalized subset contributes to infeasibility. If total becomes less or equal to zero, then

78 shared resource constrained multi-shortest path problem

the penalization of the resource stops. This early stopping rule is based on the idea

that, if the penalized arcs were not used any longer, then the constraint would not be

violated, and penalizing more would be counterproductive (it would discourage other

networks form keep using their best current path, when unnecessary).

Note that penalizing by subsets is valid as far as not every arc of every network

consumes from all the resources (recall discussion in Subsection 3.2.4). If that was not

the case, then penalizing through subsets would not be recommended. This is because

all the arcs in a network would belong to the same subset and, therefore, they would

be penalized at the same time, making no difference between penalizing or not. For

those cases, the penalization has to be done only for the arcs that belong to the current

solution, not for the subsets with at least one arc in the current solution.

At the end, the algorithm returns sets S∗, G∗S , ARS .

3.3.2.2 Phase II: The SolutionCombination Function

As discussed at the beginning of Subsection 3.3.2, the SolutionCombination function

combines the solutions in X and produces a new solution X II, as long as at least one

solution in the pool is feasible. The combination process consists of solving a reduced

version of the original IP model (3.5)–(3.8), where the only variables are those associated

with arcs in the pool of solutions. That is, the set of variables in the model is {xa}a∈X .

This form of combination of solutions has two key properties. First, the resulting so-

lution X II is at least as good as the best feasible in X . In our computational experiments,

we observed that X II was always better than any of the solutions in X . Second, X II is

guaranteed to be no worse than any solution found as a combination of the paths asso-

ciated with the solutions in X . This is due to the generation of X II by a combination of

arcs (instead of paths) that allows forks and joints to be produced at the nodes of the

subnetwork induced by the arcs in X , leading to paths that are not in the pool of solu-

tions. Our experiments with various designs led us to conclude that this combination

method is superior to others in terms of the quality of the combined solution and the

computational time to find it.

3.3.2.3 Phase III: The LocalSearch Function

In preliminary experimentation we observed that, for a given solution X II resulting

from the combination method, some networks used paths whose cost was much higher

3.3 solution methods 79

(relative to the known lower bound) than the cost associated with other networks. For

each network s, let ∆s =
∑

a∈As ca(x
II
a − xLB

a) denote this difference.

We concluded that the X II solutions tend to be unbalanced, with a relatively small

number of networks with much larger ∆s values than others. We therefore developed

the LocalSearch function taking into account the structure of the X II solutions. In par-

ticular, LocalSearch focuses on improving the paths in networks with relatively large

∆s values. This is done at the possible expense of worsening the delta values of other

networks. The search, in other words, is for a balanced solution. That is, one for which

the collection of ∆s values for all networks have less variance.

Algorithm 5 Improving solution X II

1: function LocalSearch(GS ,R,X II, δ, γ)

2: ∆s ←
∑
a∈As ca(x

II
a − xLB

a) ∀s ∈ S;

3: ∆← {∆s}s∈S ;

4: ∆← SortDescending(∆);

5: Sδ ← {s ∈ S |∆s ≥ ∆[δ]};
6: Sγ ← ∅;
7: for s ∈ S \ Sδ do

8: if ∃ r ∈ R, a ∈ As, a′ ∈ {As′}s′∈Sδ : qra > 0 & qra′ > 0 then

9: Sγ ← Sγ ∪ {s};
10: end if

11: if |Sγ | == γ then

12: break;

13: end if

14: end for

15: X III ← SolveIPModel(R,GS ,Sδ ∪ Sγ ,X II);

16: return X III;

17: end function

The local search uses two parameters, δ and γ to operate on X II. The former is the

number of networks for which the algorithm tries to improve their solution. The latter

parameter is the number of networks that the algorithm will use to trade resources with

the previous δ ones.

The procedure, shown in Algorithm 5, starts by identifying the set of δ networks

with the largest ∆s values (lines 2–5). In Algorithm 5, ∆[δ] is the δ-th element in the

descending-ordered set ∆. Set Sδ contains the networks for which the local search is

trying to improve their ∆s values. The procedure then selects, from all the networks

not in Sδ, using a first-match rule, γ networks (Sγ), each of them sharing at least one

80 shared resource constrained multi-shortest path problem

resource with one or more networks in Sδ (lines 6–14). The networks in Sγ are used as

“partners” for the networks in Sδ in order to trade off the use of resources. The values

of the parameters associated with the local search are such that δ � γ.

We define SLS = Sδ ∪ Sγ and solve the original model (3.5)–(3.8) by fixing the paths

in S \ SLS. That is, variables in the set {xa | a ∈ {As}s∈S\SLS} are fixed to 1 if a ∈ X II,

and to 0 otherwise; and the remaining variables (i.e., {xa | a ∈ {As}s∈SLS) are the only

ones in the IP model. The solution of the IP model is denoted by X III. This solution

is guaranteed to be no worse than X II. We have observed that the local search, as de-

fined above, is often able to improve upon the solution constructed by the combination

method, except in those cases when X II is near-optimal. We have experimented with a

local search that focuses only on the reduced set of networks with the worst ∆s values

(i.e., the networks in Sδ) and determined that this strategy provides very little room for

improvement because most of the resources are committed to the paths that are fixed

prior to solving the IP model.

3.3.3 Lagrangian Relaxation

The previous algorithm, as most heuristic-based procedures, will not always provide an

optimal solution to the problem, but a feasible one. That is, the output of the algorithm

will be an upper bound to the optimum value. As it will be shown in Chapter 4, for

ATFM instances of moderate size, commercial MIP solvers can obtain optimal solutions,

so the quality of the algorithm can be easily assessed. However, for bigger instances,

solvers fail to even solve the LP relaxation of the problem so, to measure quality, a

procedure to obtain lower bounds is required. For this, we study two Lagrangian Relax-

ations of the SRC-MSPP. Before discussing them, we first summarize what a Lagrangian

Relaxation is and some known theoretical results on the topic.

3.3.3.1 Theoretical Framework

The following subsection has been elaborated using as main references5 Geoffrion [58],

Fisher [52], Bertsimas and Tsitsiklis [18, Ch. 11.4] and Guignard [68]. During the ex-

position, bold lowercase letters represent columns vectors, and bold uppercase letters

matrices.

Let us start defining what the relaxation of an optimization problem is:

5 The interested reader is referred to them for a more detailed description.

3.3 solution methods 81

Definition 1. Problem RP = min{g(x) |x ∈ WRP } is a relaxation of problem P =

min{f(x) |x ∈ WP }, with the same decision variables x, if and only if:

(i) The feasible set of RP contains that of P , i. e.,WP ⊆ WRP .

(ii) Over the feasible set of P , the objective function of RP dominates that of P , i. e., ∀
x ∈ WP , g(x) ≤ f(x).

Denoting by x∗P and x∗RP the optimal solution of P and RP , respectively, it follows

that: g(x∗RP) ≤ f(x∗P).
Consider, for the sake of discussion, that problem P is of the following form:

min
x
{c′x |A1x ≤ b1,A2x ≤ b2,x ∈ W}, (P)

where x is the (column) vector of variables, c the vector of costs coefficients, b1 and b2
the right-hand side constraint vectors, A1 and A2 matrices of conformable dimensions,

and W the set containing the sign and integer restrictions on x. In the following, it is

assumed that constraints A1x ≤ b1 are “complicated”, that is, if they did not exist, the

problem could be solved efficiently. As an example, if in the SRC-MSPP there were no

capacity constraints, just a collection of shortest path had to be solved.

Among the possible relaxations for problem (P), there is the so-called Lagrangian

Relaxation (LR):

Definition 2. The Lagrangian Relaxation of problem (P), relative to constraints A1x ≤
b1, is:

min
x
{c′x+ λ′(A1x− b1) |A2x ≤ b2,x ∈ W}, (LRλ)

where λ is a (fixed) vector of non-negative real numbers called Lagrangian multipliers,

and constraints A1x ≤ b1 are said to be dualized.

Note that (LRλ) fulfills Definition 1: Condition (i) clearly holds, while (ii) follows

from the facts that λ ≥ 0 and, for every feasible solution of (P), A1x− b1 ≤ 0. As a

result, for any λ ≥ 0, any optimal solution of (LRλ), called Lagrangian solution and

denoted by x∗λ, provides a lower bound on the optimal value of (P). The goal is to find

the tightest of such as bounds, which is called the Lagrangian dual problem:

Definition 3. The Lagrangian dual of problem (P), relative to constraints A1x ≤ b1, is:

max
λ≥0

z(λ), (LR∗)

where z(λ) is the optimal cost of (LRλ).

82 shared resource constrained multi-shortest path problem

Under the assumption that the convex hull of the non-dualized constraints, denoted

by CH({x ∈ W|A2x ≤ b2}), is a bounded polyhedron (as happens in the SRC-MSPP),

z(λ) can be written as:

z(λ) = min
i={1,...,M}

c′xi + λ′(A1x
i − b1),

where {x1, . . . ,xM} is the set of extreme points of CH({x ∈ W|A2x ≤ b2}). From this

representation it can be seen that z(λ) is a concave picewise linear function (since it

is the minimum of a finite collection of linear functions of λ), and that problem (LR∗),

therefore, can be recast as a linear programming, but with a very large number of

constraints.

Unlike the case of the LP relaxation, if a Lagrangian solution x∗λ turns out to be

feasible for problem (P), it does not mean to be optimal. It just provides bounds on

where the optimal cost will be: [c′x∗λ+λ
′(A1x

∗
λ− b1), c′x∗λ]. Optimality can be assessed

when complementary slackness holds, i. e., λ′(A1x
∗
λ − b1) = 0. Unfortunately, this a

sufficient, not a necessary condition, so x∗λ may be feasible and optimal for (P) and not

satisfy complementary slackness.

The following theorem provides a significant result about the strength of the bound

achieved by solving the Lagrangian dual problem.

Theorem 1. The optimal value (zLR∗) of the Lagrangian dual problem is equal to the optimal

cost of the following linear programming problem:

min
x
{c′x |A1x ≤ b1,CH({x ∈ W|A2x ≤ b2})}.

Proof. See in Geoffrion [58].

Corollary 1. Let zIP and zLP denote the optimal cost of problem (P) and its LP relaxation,

respectively. Then:

zLP ≤ zLR∗ ≤ zIP,

that is, the Lagrangian dual problem provides a lower bound that is always at least as good as

that coming from the LP relaxation.

Corollary 2. If the non-dualized constraints have the intregrality property, i. e.: CH({x ∈
W|A2x ≤ b2}) = {x |A2x ≤ b2}, then the optimal cost of the Lagrangian and LP relaxation

are equal: zLP = zLR∗ .

3.3 solution methods 83

Under the scenario described in the last corollary, solving the LR instead of the LP

relaxation of (P) may still be of interest because: 1) Sometimes, the LP cannot be com-

puted easily, and 2) The procedure to solve the LR can be combined with a heuristic to

get feasible integer solutions for (P).

Note that in all the previous discussion, just one set of constraints was dualized

(A1x ≤ b1). The motivation, as previously mentioned, was that this set was formed by

complicated constraints, while the non-dualized ones had a special structure that made

of the remaining problem an easier one to solve. On some occasions, however, there are

two (or more) sets of constraints with a special structure and common variables linking

them. In that situation, it is possible to split the common variables and dualized the

copy constraints. This particular type of relaxation is called Lagrangian Decomposition

and works as follows:

1. Define the following equivalent problem of (P) (same optimal values, but different

variable spaces):

min
x,u
{c′x |A1x ≤ b1,x ∈ W,A2u ≤ b2,u ∈ W,x = u}. (P ′)

2. Dualized the copy constraints and solve two independent subproblems:

min
x,u
{c′x+ λ′(u−x) |A1x ≤ b1,x ∈ W,A2u ≤ b2,u ∈ W} = (LDλ)

min
x
{(c′ −λ′)x |A1x ≤ b1,x ∈ W}+min

u
{λ′u |A2u ≤ b2,u ∈ W}.

Notice that on this occasion λ is not constrained in sign and that obtaining a La-

grangian solution that is feasible for (P ′) directly implies optimality (complementary

slackness holds).

For the Lagrangian Decomposition, the following theorem states the strength of the

bound achieved:

Theorem 2. The optimal value (zLD∗) of the Lagrangian Decomposition dual problem is equal

to the optimal cost of the following linear programming problem:

min
x
{c′x |CH({x ∈ W|A1x ≤ b1}) ∩CH({x ∈ W|A2x ≤ b2})}.

Proof. See in Guignard and Kim [69].

Corollary 3. If one of the two subproblems has the integrality property, then zLD∗ is equal to

the best of the two LR bounds corresponding to dualizing either A1x ≤ b1 or A2x ≤ b2. If both

subproblems have the integrality property, then zLD∗ = zLP.

84 shared resource constrained multi-shortest path problem

To solve the Lagrangian dual problem and obtain the optimal vector of Lagrangian

multipliers λ∗, several methods exist in the literature. One of them is the Subgradient

method, which is based on obtaining subgradients of z(λ) to iteratively update the

Lagrangian multipliers in a steepest ascent fashion. Before describing it, we define what

a subgradient is and present two theoretical results employed in the algorithm.

Definition 4. A vector φ is a subgradient of a concave function f : Rn 7→ R at point

x0 ∈ Rn if:

f(x) ≤ f(x0) +φ′(x−x0) ∀x ∈ Rn.

The set of all subgradients of f at x0, denoted by ∂f(x0), is the subdiferential of f at

x0.

Proposition 3. Let f : Rn 7→ R be a concave function. A vector x∗ maximizes f over its

domain if and only if 0 ∈ ∂f(x∗).

Proof. See in Bertsimas and Weismantel [19, Ch. 4.4]

Proposition 4. Let x∗λ be a Lagrangian solution of problem (LRλ) for the vector of multipliers

λ. Then, a subgradient of z(λ) is given by A1x
∗
λ − b1.

Proof. See in Bertsimas and Weismantel [19, Ch. 4.4]

The subgradient method consists of the following iterative algorithm:

1. Choose a starting vector of multipliers λj , where j stands for the iteration index.

At the beginning, j = 0.

2. Solve problem (LRλ) for λj and let φj = A1x
∗
λ − b1.

3. If φj = 0, then 0 ∈ ∂z(x∗λ) and the algorithm terminates because λj is optimal.

Else, let λj+1 = λj + θjφj , where θj is a positive stepsize parameter at iteration j.

Increment j and go to step 2.

In the algorithm, the stopping criterion of φj = 0 is rarely met, so others such as the

number of iterations or distance between multipliers are incorporated6. Additionally, if

sign restrictions exist over the multipliers, each component of λ that violates it after the

last step of the algorithm, is set to 0.

6 As exposed in Guignard [68], with this algorithm, the sequence ‖λj −λ∗‖ is monotone non-increasing.

3.3 solution methods 85

To establish θj , different rules exist that guarantee the convergence of the algorithm

to the dual optimum (zLR∗). One of the most popular is:

θj = µj
zLR∗ − z(λj)
‖φj‖2

,

where µj ∈ (0, 2). Unfortunately, this rule requires of the unknown value of zLR∗ , so in

practice the best estimation available is used.

To overcome the difficulty of having to know zLR∗ , in Bragin, Luh, Yan, Yu, and

Stern [23] and Zhao, Luh, and Wang [117] is presented a modification of the previous

algorithm called Surrogate Lagrangian Relaxation. In this method, the best estimation

of zLR∗ is only used at the first iteration of the algorithm, not being necessary the rest

of the times. Furthermore, the method guarantees the convergence of the algorithm

without having to solve (LRλ) to optimality at each iteration. As a drawback, other

parameters have to be set by the user.

3.3.3.2 Lagrangian Relaxation and Decomposition for the SRC-MSPP

From the previous subsection it is clear that the most natural Lagrangian Relaxation for

the IP formulation of the SRC-MSPP, model (3.5)-(3.8) on page 57, is the one resulting

from dualizing the capacity constraints:

min
∑
s∈S

∑
a∈As

caxa +
∑
r∈R

λr
(∑
s∈S

∑
a∈As

qraxa −W r
)
, (3.10)

subject to:

∑
a∈Λ−n (n)

xa −
∑

a∈Λ+
n (n)

xa =

1, if n = os,

−1, if n = ds,

0, otherwise.

∀s ∈ S,n ∈ Ns (3.11)

xa ∈ {0, 1}, ∀s ∈ S, a ∈ As. (3.12)

So for a given vector of (non-negative) multipliers λ = [λ1, . . . ,λ|R|]
′, problem (3.10)–

(3.12) is a shortest path problem in |S| networks. Notice that as the flow constraints

(3.11) define a polyhedron of integer vertices, the bound provided by the Lagrangian

dual problem will be equal to that coming from the LP relaxation of model (3.5)-(3.8)

(recall Corollary 2).

In the computational experience we employed this relaxation to obtain lower bounds

with which to compare the solutions generated by the matheuristic.

86 shared resource constrained multi-shortest path problem

An alternative Lagrangian Relaxation

Alternatively to the previous relaxation, it is possible to formulate a new one that ex-

ploits the structure of the capacity constraints in the SRC-MSPP. Note that these con-

straints have the structure of a multiple (possibly multidimensional) knapsack problem.

For example, in the ATFM problem, there are multiple bins/knapsacks where an arc

can be assigned to (e. g., same departure airport, but different departure time), and

when assigned, it may consume (multidimensional part) more than one resource, e. g.,

a sector for multiple periods of time.

This structure is exploited by means of the Lagrangian Decomposition of the SRC-

MSPP. Here we present the mathematical formulation of this relaxation, leaving obtain-

ing computational results as future research.

To obtain the relaxation, the first step is to make a copy of the decision variables, so

the flow and capacity constraints can be split into two separated groups:

SRC-MSPP with copy of the variables

min
∑
s∈S

∑
a∈As

caxa, (3.13)

subject to:

∑
a∈Λ−n (n)

xa −
∑

a∈Λ+
n (n)

xa =

1, if n = os,

−1, if n = ds,

0, otherwise.

∀s ∈ S,n ∈ Ns (3.14)

xa = x′a ∀s ∈ S, a ∈ As, (3.15)∑
s∈S

∑
a∈As

qrax
′
a ≤W r ∀r ∈ R, (3.16)

xa,x
′
a ∈ {0, 1}, ∀s ∈ S, a ∈ As. (3.17)

Then, we dualize constraints (3.15) and obtain the next relaxation:

min
∑
s∈S

∑
a∈As

(
caxa + λa(xa − x′a)

)
, subject to: (3.14), (3.16) and (3.17).

This relaxation can be split into the following two subproblems:

3.3 solution methods 87

Subproblem 1: Multiple Shortest paths

min
∑
s∈S

∑
a∈As

(ca + λa)xa, (3.18)

subject to:

∑
a∈Λ−n (n)

xa −
∑

a∈Λ+
n (n)

xa =

1, if n = os,

−1, if n = ds,

0, otherwise.

∀s ∈ S,n ∈ Ns (3.19)

xa ∈ {0, 1}, ∀s ∈ S, a ∈ As. (3.20)

Subproblem 2: Generalized knapsack problem

min −
∑
s∈S

∑
a∈As

λax
′
a, (3.21)

subject to:∑
s∈S

∑
a∈As

qrax
′
a ≤W r ∀r ∈ R, (3.22)

x′a ∈ {0, 1}, ∀s ∈ S, a ∈ As. (3.23)

Note that in real applications this subproblem will usually be formed by multiple

independent knapsack problems. As an example, in the ATFM problem, each sector and

airport is an independent (multiple multidimensional) knapsack problem. Furthermore,

to increase the possibilities of obtaining solutions for which xa = x′a ∀s ∈ S, a ∈ As,
some constraints based on the nature of the problem may be added to this second

subproblem. E. g., for the ATFM problem, it can be added constraints that force a flight

to not depart more than once.

4
C O M P U TAT I O N A L E X P E R I E N C E

In this chapter we discuss, through a series of computational experiments, the empiri-

cal behavior of the work developed in the previous chapters of the thesis. We start pre-

senting the ATFM data sets employed, which were generated using publicly available

sources and released for free disposal. Afterwards, we discuss the computational results

obtained when formulating the ATFM as an SRC-MSPP, and solving it by means of ex-

act methods and the matheuristic proposed in Chapter 3. Results for the Lagrangian

Relaxation resulting from dualizing the capacity constraints are also discussed. The

chapter concludes with a thorough analysis of the elements of the algorithm to assess

their contribution, and showing the flight plans modifications produced by the solution.

4.1 atfm data sets

In ATFM, unlike other optimization problems, there is not an established collection of

data sets that helps authors to test their proposals, reproduce others’ work, etc. This

clearly complicates the research labor, making that the authors have to spend a lot of

time preparing the data sets for the computational experience.

To contribute to change that, we generated a collection of ATFM data sets using pub-

licly available sources. The data sets can be found, jointly with the code of the algorithm

described in Subsection 3.3.2, in https://github.com/DavidGarHeredia/SRC-MSPP.

89

https://github.com/DavidGarHeredia/SRC-MSPP

90 computational experience

As far as we know, the only publication that also released the data sets employed

in the computational experience is that of Dal Sasso et al. [34]. However, these data

sets, opposite to ours, are completely synthetic, meaning that no real data sources were

used to generate them. Testing our proposal also with these data sets is left as future

research.

In the following, we describe the process that we followed to generate the mentioned

ATFM data sets.

4.1.1 Raw data transformation

As said, we used publicly available sources to create our data sets. Concretely, from [111]

we obtained information about domestic flights in the US, and from [112] information

about the airports’ location (latitude and longitude). The information about the flights

corresponds to the 16th of January, May, and September of 2019. The choice of the 16th

is due to the high volume of air traffic on that day for each of these months. Henceforth,

we will refer to these data sources as raw data sets.

Among the flight information available in the raw data sets, we were interested1

in: The departure and landing time, the origin and destination airport, if the flight

was canceled or diverted (i. e., it landed at a different destination than the originally

scheduled), and the number of flights operated by each aircraft (continued flights).

We made the following modifications to the raw data sets:

1. Instead of expressing the time in hours and minutes, it was transformed to a

number between 0 and 24h ∗ 60min/h = 1440.

2. The following flights were removed:

a) Flights with missing information (NAs).

b) Canceled and diverted flights.

c) Flights outside the contiguous territory of the US (mainly Hawaii, Alaska

and Guatemala). This is for simplicity when creating the sectors (see later

on).

Respect to deleting flights, if there had been any flight using an airport not listed in

the airport data set, it would have also been removed. This is because the coordinates

1 Other information contained in these data sets was not used and therefore it will not be described here.

Nonetheless, the interested reader can find it in [111].

4.1 atfm data sets 91

of the airport, which are required to create the routes and sectors afterward, would be

missing. However, we did not encounter this situation.

Note that to generate ATFM flight plans, the information contained in the raw data

sets is not enough. It is also needed information about: i) The sectors and their capacity,

ii) The turnaround time between continued flights (recall parameter τf ′,f in Section 2.4),

and iii) The route of each flight. As this information is not available, we had to estimate

it as commonly do in ATFM literature (e. g., [4, 11, 20]). The procedure to do that is

discussed later on, but we point out here that, as a consequence of not having informa-

tion about the route of each flight, the landing time will be substituted by the departure

time plus the time required to travel the estimated route. This is to have coherence in

time.

4.1.2 Sectors and route waypoints

To be able to create the flight plans with the information contained in the raw data

sets, we first had to model the scenario where the flights take place: The contiguous

territory of the US. For that, we divided the airspace into 400 sectors using a 20× 20

grid, as illustratively shown in Figure 17. The boundaries of the grid are set according

Figure 17: Example of sectors and waypoints.

to maximum and minimum latitude and longitude of the airports in the data set ±1
degree. That way, all the airports are contained in the grid and the boundaries do not

pass through them (the ±1 provides the slackness).

92 computational experience

As illustrated in the figure, associated with each sector there are nine waypoints, eight

on the boundary, to define entry and exit points; and one in the middle, to connect the

boundary-waypoints by bi-directional arcs (solid lines in the figure). Each airport is also

connected to its sector boundary-waypoints by bi-directional arcs. This gives rise to a

space graph that will be used later on to establish the flights routes. In this graph, the

length of each arc is set as the Haversine distance between the waypoints connected by

the arc.

4.1.3 Flight plans

So far, the information at disposal is that of the raw data sets and the one created in

the previous subsection about sectors and potential routes. However, to create the flight

plans, some extra information referring to time is required. Concretely:

• The maximum departure delay for each flight. We set this value to 90 minutes.

Notice that the scheduled departure time plus these 90 minutes establish the de-

parture time window of every flight.

• The speed of each aircraft. We define a common speed of 885 km/h (0.742 Mach).

Usually, commercial aircraft travel at 0.8 M, but due to time discretization, this

speed resulted in less sensible results. Note that the aircraft speed and the length

of each arc define the scheduled travel time (`m,n).

• The maximum speed variation permitted when traversing an arc (`m,n, `m,n). We

set this value to 25% of the scheduled travel (`m,n). Note that this limits the latest

landing time to 25% of the travel time plus the ground delay.

• The turnaround time (τf ′,f) for continued flights. We set this value to the differ-

ence between the scheduling departure time of f and the scheduled landing time

of f ′. We noticed, however, that sometimes this value was too big, making that if

flight f ′ suffered some delay, waiting the turnaround time would not allow the

continued flight f to depart within its departure time window. To avoid that sit-

uation, we reduced τf ′,f in those cases. The reduction value was obtained with

the following rule min(6,max(τf ′,f − 1, 0)). Value 6 was empirically set to obtain

sensible results.

• Time discretization. We did it in time periods of 5 minutes. When no integer

numbers were obtained from transforming minutes to time periods, we used the

4.1 atfm data sets 93

following rounding rules: 1) For the travel times (`m,n), we always rounded up,

2) For the changes of speed (`m,n, `m,n), we rounded up when the decimal part

was equal or above to 0.75, else we rounded down. Rounding up with 0.5 may

represent an excessive change of speed, hence our decision.

With all this information, the flight plans can be generated. The main route of each

flight is defined as the shortest path between its departure and landing airport in the

graph constructed in the previous subsection. To have time coherence, the landing time,

as earlier pointed out, is changed to its departure time plus the time required to reach

its destination when traveling the main route at the scheduled speed.

Respect to the alternative routes, notice that obtaining them through the straightfor-

ward approach of establishing the k−shortest paths from origin to destination may not

be valid because, due to how the space graph is built, these shortest paths may use the

same sectors that the main route, making them useless. Thus, we proceed as follows.

First, using the main route, we obtained the minimum capacity required at sectors to

avoid changes in the flight plans (see example in Figure 18).

S176 S235 S254

S130 S135 S137

100 200 300 400 100 200 300 400 100 200 300 400

0

20

40

60

80

0

20

40

60

80

Time period

C
a

p
a

c
it
y

Figure 18: Capacity requirements per time period for the most demanded sectors on January 16,

2019.

94 computational experience

Then, to alleviate these capacity requirements, we generated up to four alternative

routes for each flight passing through at least one of the twenty most demanded sec-

tors. To explain how these alternative routes are obtained, consider that flight f passes

through N of these twenty sectors. The procedure sets a high2 cost (i. e., travel time) for

the arcs of the space graph passing through these N sectors. An exception occurs when

the sector contains the departure or landing airport of the flight. Setting a high cost for

the arcs of those sectors is worthless because it is not possible to set an alternative route

that does not use them. After setting the high cost, the shortest path from origin to des-

tination for flight f is recomputed, obtaining an alternative route that passes through

different sectors than the main one. To obtain another route, the arcs of the closest sec-

tor to the landing airport are set to their original cost and the SP is recomputed. The

procedure continues until no penalized sectors remain or four alternative routes have

been obtained.

4.1.4 4D-networks

Once created the flight plans, the 4D-networks to formulate the ATFM as an SRC-MSPP

can be obtained by incorporating the time information into the nodes of the networks

as exposed in Sections 2.6 and 3.2.5. Then, the 4D-networks are sorted in topological

order. That is, the nodes of the network are labeled in such a way that no arc has its tail

node with a label greater than its head node. The output at this phase is a table where

each arc corresponds to a row and contains the following information (columns of the

table):

• Arc ID. An integer from 0 to | ∪s∈S As| − 1 to identify the arc.

• Network ID. An integer from 0 to |S| − 1 indicating to which network belongs the

arc.

• Flight ID. An integer from 0 to |F| − 1 indicating to which flight belongs the arc.

• Previous flight ID. An integer indicating the ID of the predecessor flight. If the

flight has not predecessor, we set this value to −1.

• Tail node of the arc. An integer from 0 to |Ns| − 1 indicating the tail node of the

arc. Recall that this label comes from the topological sorting.

2 We used 10, 000 units.

4.1 atfm data sets 95

• Head node of the arc. An integer from 0 to |Ns| − 1 indicating the head node of

the arc

• Cost of using the arc. Using the notation of Subsection 2.5.1: i) For ground delays,

ε1 = 0.25 and cg = 1, ii) For late arrivals, ε2 = 0.75 and ca = 2, and iii) For speed

changes, ε3 = 0.5, cv = 100 and cr = 10. The speed change cost was additionally

reduced by 5 units (without allowing negative quantities), because it showed a

better empirical behavior in the final flight plans obtained.

• Begin time. An integer between 0 and 1440 indicating the time at which the tail

node was left when using this arc.

• End time. An integer between 0 and 1440 indicating the time at which the head

node is reached when using this arc.

• Speed change. When the arc refers to a departure or landing operation, this shows

the number of time periods that differ from scheduled, i. e., t2 − t1 − `m,n. When

the arc refers to a change of speed in the air, it shows t2−t1−`m,n

`m,n
, (recall in Subsec-

tion 2.5.1).

• Route ID. An integer from 1 to 5 indicating to which route belongs the arc. A

value of 1 refers to the main route, while a value from 2 to 5 to the rest of the

alternative routes (if any).

• Phase of the flight. Due to the dummy nodes existing for origin and destination

(triangular nodes in Figure 14, page 63), and the arcs connecting continued flights,

there are seven possibilities: Dummy Source, departure, ground delay, air, land,

union and dummy sink.

• Sector or airport employed by the arc. Arcs associated with no sector (e. g., those

connecting continued flights) have the label none.

4.1.5 Capacity constraints

To generate the ATFM data sets, the only part that remains is creating the capacity con-

straints for airports and sectors. The output table described in the previous subsection

has all the information needed (resources and time at which they are used) to formulate

96 computational experience

the left-hand side of these constraints. Thus, the only part left is to generate the capacity

levels (right-hand sides) of each resource.

As this point is critical for the ATFM problem, we generated different scenarios (ca-

pacity levels) to test the robustness of the formulation and the proposed algorithm.

Particularly, for each flight plan, we tested twelve scenarios, which we grouped into

three categories (easy, medium, and difficult).

We first created a base scenario with capacities based on the minimum value required

for the original flight plan to be feasible. For example, for sector S135 in Figure 18, that

value is 62. We noticed that with this rule, however, the less demanded sectors/airports

ended up with a really low capacity level, so we decided to set a minimum value for sec-

tors, departures and landings. Grouping the constraints by these 3 categories (sectors,

departures and landings), the minimum value of each group was computed as the 10%

trimmed mean of the capacities assigned with the rule described at the beginning of the

paragraph. As an example, in the flight plan of 2019/Jan/16, the minimum value was

15 aircraft for sectors, and 2 for departure and landing operations. The creation of the

base scenario concludes by including constraints that limit the number of simultaneous

departures and landings occurring at each airport (recall parameter Ctk in Section 2.4).

The capacity value for each of these constraints was set equal to 80% of the total depar-

ture and arrival capacity of the corresponding airport. Note that due to this last group

of constraints, the plan resulting from all the flights using their main route is no longer

feasible.

The twelve abovementioned scenarios are created by applying different capacity re-

ductions to the base scenario. Easy cases simulate the effect of bad weather moving

across sectors and causing capacity reductions (Bertsimas et al. [20]). Concretely, the

generation of these instances starts with one of the five most demanded sectors (chosen

at random) and two contiguous sectors. The capacity of these three sectors (and their

airports) is reduced during five consecutive time periods. Then, the capacity reduction

is moved to three other contiguous sectors for another five time periods. The process

is repeated for the entire time horizon. The reductions were set at 10%, 20%, 30% and

40% of the base capacity, leading to a total of four scenarios. Medium cases are based

on the easy ones with an additional capacity reduction randomly applied to 50% of the

elements (sectors and airports) and enforced during the entire planning horizon. The

additional reduction of the capacity of each element is randomly chosen between 1%

and 20%. For the difficult cases, the randomly generated capacity reduction is applied

4.1 atfm data sets 97

to all elements. At the end of the penalization process, a minimum capacity of one

aircraft was set for each element in all the scenarios.

4.1.6 Instances dimensions

In order to build a test set with various problem sizes, we created versions with fewer

flights than those contained in the raw data sets. Concretely with 30% and 65% of the

total number of aircraft. Note that the generation of capacity levels (previous subsec-

tion) is flight plan-depended, so they had to be repeated for these smaller plans. The

dimensions of the instances in our test set are shown in Table 2. Note that each arc

Table 2: Dimensions of the instances in our test set.

Flight plan Size #Flights #Networks #Arcs #Nodes #Resources

Jan 30% 5,596 1,329 3,116,931 1,482,732 136,887

May 30% 6,951 1,368 4,043,046 1,868,888 145,711

Sep 30% 6,610 1,368 3,6706,44 1,729,221 142,734

Jan 65% 11,788 2,879 7,195,904 3,336,779 173,249

May 65% 13,752 2,963 9,717,333 4,341,805 178,451

Sep 65% 13,530 2,964 8,597,363 3,922,250 185,519

Jan 100% 18,100 4,429 11,934,419 5,446,911 184,404

May 100% 20,634 4,558 14,475,487 6,457,815 204,724

Sep 100% 20,581 4,559 13,993,972 6,248,302 201,451

corresponds to a variable in the IP formulation of the SRC-MSPP (model (3.5)-(3.8) on

page 57), each node to a flow constraint, and each resource to a capacity constraint.

The large number of capacity constraints is due to the product of the number of capac-

ity elements and periods in the planning horizon. There are twelve scenarios for each

case in the table, resulting in a total of 108 instances. Since most of the constraints in

the problem define facets (flow constraints), a strong LP relaxation is expected when

attempting to solve the problem using exact methods. Our computational experiments

corroborate this important characteristic of the model, which others have pointed out

as related to time-expanded network IP formulations (Boland and Savelsbergh [22]).

98 computational experience

4.2 computational results

In this section we discuss the results of a series of computational experiments performed

using the ATFM instances created before. The experiments are oriented to study the

empirical behavior of the IP formulation of the SRC-MSPP, the matheuristic proposed to

solve it, and the Lagrangian Relaxation resulting from dualizing the capacity constraints

(recall in Subsection 3.3.3.2).

We perform all experiments on an HP Z230 Tower Workstation, with 4 cores (pro-

cessor i7-4770 3.40GHz) and 32 GB of RAM. Our MIP solver is Gurobi 9.0 ([70]). The

matheuristic algorithm was coded in C++, compiled using the GNU compiler 6.3, and

run on a Debian 9 Operating System. The for-loop to generate the pool of solutions

(Algorithm 2, page 70) was parallelized using OpenMP ([102]) with 8 threads.

To take into account the random elements in the proposed matheuristic, we solved

each problem instance five times. We represent the associated variability with violin

plots, a well-known extension of the boxplot that shows the distribution of the data. In

violin plots, the quantiles corresponding to 25%, 50% (median), and 75% are depicted

with a solid line, while a dark diamond shows the mean.

In addition, we set the MIP gap in Gurobi at various levels depending on the purpose

for calling this optimizer: solving full model (0.5%), generating the pool of solutions

(1%), combining the solutions (1%), and applying local search (0.5%).

4.2.1 Integer Programming Results

We now discuss the results when solving the ATFM instances through exact methods

(MIP solver). The goals with this part of the experiments are: 1) To corroborate the

hypothesis of the good behavior of the IP formulation for the SRC-MSPP given that

most of the constraints define facets, and 2) To obtain the optimal solutions to assess

the goodness of the algorithm later on.

The results exposed are without using the graph of conflict methodology introduced

in Section 2.7. Preliminary results shown that there was not time gain when employing

it. Actually, on several occasions it was counterproductive, being faster, although not

significantly, solving the problem without this preprocessing. We partially think that

a more efficient implementation of the code of that methodology could reverse the

situation, but for the moment, the conclusion is that it does not produce any benefit.

4.2 computational results 99

We attempted to solve the IP model for the 108 instances in our test set with Gurobi.

However, 44 of the runs terminated in an out-of-memory error and without an integer

solution. These instances (recall in Table 2) correspond to the full flight plans (size 100%)

and for the 65% reduced flight plans for the May and September days under the difficult

scenario. Table 3 and 4 show the results of the Gurobi runs.

Table 3: Gurobi results for instances of size 30%.

Flight plan Difficulty Reduction zIP zLP Gap t nn col% row%

Jan easy 10% 53.94 53.94 0.00% 121.54 0 17.81% 38.34%
Jan easy 20% 140.71 140.71 0.00% 123.41 0 17.81% 38.34%
Jan easy 30% 344.77 344.77 0.00% 125.96 0 17.81% 38.34%
Jan easy 40% 799.52 796.83 0.34% 136.46 1 17.81% 38.34%
Jan medium 10% 1,418.49 1,417.74 0.05% 180.84 1 17.94% 38.39%
Jan medium 20% 1,557.70 1,556.20 0.10% 216.62 1 17.94% 38.39%
Jan medium 30% 1,846.41 1,843.63 0.15% 217.09 1 17.94% 38.39%
Jan medium 40% 2,570.51 2,566.67 0.15% 338.83 1 17.94% 38.39%
Jan difficult 10% 2,332.08 2,325.09 0.30% 312.98 1 18.12% 38.62%
Jan difficult 20% 2,394.94 2,386.05 0.37% 322.54 1 18.12% 38.62%
Jan difficult 30% 2,506.20 2,496.11 0.40% 342.96 1 18.12% 38.62%
Jan difficult 40% 2,779.11 2,771.58 0.27% 371.94 1 18.12% 38.62%
May easy 10% 68.70 68.70 0.00% 165.34 0 16.32% 35.76%
May easy 20% 195.58 195.58 0.00% 161.97 0 16.32% 35.76%
May easy 30% 577.15 577.15 0.00% 177.37 0 16.32% 35.76%
May easy 40% 1,456.42 1,456.42 0.00% 185.56 0 16.32% 35.77%
May medium 10% 1,388.94 1,388.94 0.00% 206.63 0 16.39% 35.80%
May medium 20% 1,559.76 1,559.76 0.00% 223.57 0 16.39% 35.80%
May medium 30% 1,955.98 1,955.98 0.00% 236.27 0 16.39% 35.80%
May medium 40% 2,744.99 2,743.30 0.06% 347.99 1 16.39% 35.81%
May difficult 10% 2,684.09 2,672.23 0.44% 481.28 1 16.50% 35.88%
May difficult 20% 2,757.35 2,749.10 0.30% 474.33 1 16.50% 35.88%
May difficult 30% 3,077.13 3,071.69 0.18% 830.47 1 16.50% 35.89%
May difficult 40% 3,774.89 3,759.51 0.41% 1,105.56 1 16.50% 35.90%
Sep easy 10% 82.33 82.33 0.00% 152.28 0 17.38% 37.69%
Sep easy 20% 152.74 152.74 0.00% 148.01 0 17.38% 37.69%
Sep easy 30% 379.26 379.26 0.00% 153.40 0 17.38% 37.69%
Sep easy 40% 892.31 892.31 0.00% 169.04 0 17.39% 37.70%
Sep medium 10% 1,003.58 1,003.58 0.00% 153.13 0 17.40% 37.65%
Sep medium 20% 1,105.11 1,105.11 0.00% 160.34 0 17.40% 37.65%
Sep medium 30% 1,287.59 1,287.59 0.00% 162.91 0 17.40% 37.64%
Sep medium 40% 1,635.60 1,635.60 0.00% 177.98 0 17.40% 37.65%
Sep difficult 10% 2,470.21 2,461.54 0.35% 432.28 1 17.51% 37.70%
Sep difficult 20% 2,619.64 2,608.15 0.44% 436.89 1 17.51% 37.70%
Sep difficult 30% 2,900.44 2,885.52 0.52% 544.09 1 17.51% 37.70%
Sep difficult 40% 3,477.41 3,462.06 0.44% 607.60 1 17.51% 37.70%

100 computational experience

Table 4: Gurobi results for instances of size 65%.

Flight plan Difficulty Reduction zIP zLP Gap t nn col% row%

Jan easy 10% 63.94 63.94 0.00% 303.15 0 16.61% 36.13%
Jan easy 20% 137.28 137.28 0.00% 306.54 0 16.61% 36.13%
Jan easy 30% 462.09 462.09 0.00% 315.67 0 16.61% 36.13%
Jan easy 40% 1,368.88 1,366.80 0.15% 418.51 1 16.61% 36.14%
Jan medium 10% 2,190.44 2,185.87 0.21% 707.22 1 16.68% 36.18%
Jan medium 20% 2,315.25 2,315.25 0.00% 647.73 0 16.68% 36.18%
Jan medium 30% 2,814.98 2,812.20 0.10% 909.54 1 16.68% 36.18%
Jan medium 40% 3,992.40 3,983.01 0.24% 1,160.82 1 16.68% 36.19%
Jan difficult 10% 3,921.93 3,912.03 0.25% 1,806.97 1 16.75% 36.28%
Jan difficult 20% 4,079.09 4,067.67 0.28% 1,956.49 1 16.75% 36.28%
Jan difficult 30% 4,445.04 4,434.00 0.25% 2,105.56 1 16.75% 36.28%
Jan difficult 40% 5,146.37 5,126.39 0.39% 2,599.7 1 16.75% 36.28%
May easy 10% 113.83 113.83 0.00% 432.83 0 14.87% 33.35%
May easy 20% 412.49 412.49 0.00% 442.17 0 14.87% 33.35%
May easy 30% 1,134.42 1,134.42 0.00% 474.99 0 14.87% 33.35%
May easy 40% 2,751.35 2,745.71 0.21% 744.24 1 14.87% 33.35%
May medium 10% 2,100.63 2,092.90 0.37% 970.32 1 14.91% 33.39%
May medium 20% 2,572.71 2,570.74 0.08% 1,043.58 1 14.91% 33.39%
May medium 30% 3,688.33 3,679.38 0.24% 1,241.99 1 14.91% 33.39%
May medium 40% 5,812.79 5,812.79 0.00% 1,832.07 0 14.91% 33.39%
Sep easy 10% 41.06 41.06 0.00% 387.21 0 15.73% 34.74%
Sep easy 20% 46.67 46.67 0.00% 372.20 0 15.73% 34.74%
Sep easy 30% 71.64 71.64 0.00% 369.44 0 15.73% 34.74%
Sep easy 40% 114.07 114.07 0.00% 368.10 0 15.73% 34.74%
Sep medium 10% 2,413.05 2,406.19 0.29% 769.83 1 15.78% 34.76%
Sep medium 20% 2,523.37 2,516.18 0.29% 817.48 1 15.78% 34.76%
Sep medium 30% 2,794.17 2,786.20 0.29% 863.04 1 15.78% 34.76%
Sep medium 40% 3,583.07 3,569.65 0.38% 999.19 1 15.78% 34.76%

The first three columns of each table show the date of the flight plan, the level of

difficulty and the capacity reduction due to the storm. This is followed by zIP and

zLP, the objective function value of the integer solution and LP relaxation, respectively.

Gap is the integrality gap, defined as 100 z
IP−zLP

zLP . Column t is the wall time in seconds

to obtain the integer solution, and nn the number of nodes explored in the Branch

& Bound (B&B) tree. A value of 0 means that the solution was obtained at the root

node. Note that nn, along with Gap, measures the strength of the IP formulation. col%
and row% represent the percentage of columns and rows that Gurobi deleted in the

preprocessing phase.

The following observations relate to the values in both tables:

4.2 computational results 101

1. Gurobi’s solution times are within a range that is acceptable in practice for the

ATFM problem (43 minutes in the worst case).

2. Storm capacity reduction has a significant impact on the solution time. For exam-

ple, for the 30%-size instances of January of medium difficulty, the variability in

time is (338.83− 180.84)/338.83 = 0.466, that is, a 46% of the worst time. It can be

corroborated that a variability larger than 20% occurs in 10 out of the 16 possible

cases in the tables.

3. The size and difficulty of the problem have even a bigger impact on the time

required to solve the problem. For the size, compare for example the solution

time of instance May, medium difficulty and 10% reduction in both tables. For the

difficulty, compare for example in Table 3 the solution time of the instance Sep,

medium difficulty and 10% reduction with that of Sep, difficult and 10%.

4. The integrality gap is always below 0.6%, being 0% in 30 out of 64 instances. In

those cases, the problem was solved at the root node nn = 0. This shows the

strength of the LP relaxation of the formulation for the problem.

5. The last two columns show that Gurobi achieved a significant reduction of the

original size of the problem.

Note that the results were obtained for the cost structure discussed in the data set

generation and Subsection 2.5.1, which is particularly suited for ATFM problems. To

test the sensitivity of Gurobi to the cost structure in the IP formulation, we generated

costs from a continuous uniform distribution (0, 100) for the arcs in the networks in

our problem test set. This new cost structure turned out to increase the difficulty of the

problems in such a way that, out of the 108 instances, Gurobi was able to solve only 24.

All of these instances belong to the sets of size 30%. The results for the experiments with

this cost structure are exposed later on jointly with the performance of the algorithm.

4.2.2 Matheuristic and Lagrangian Relaxation Results

We now discuss the computational results obtained when solving the ATFM instances

with the matheuristic and the Lagrangian relaxation. This discussion includes: the pa-

rameter setting of the algorithm, the performance analysis of the solution methods and

insights into their performance.

102 computational experience

4.2.2.1 Parameter setting

We used ParamILS (Hutter, Hoos, and Stützle [77]) to set the values for the parameters

of our matheuristic procedure, except for the size of the solution pool, which is dis-

cussed below. ParamILS is an automated system for parameter setting and algorithm

configuration. The goal of this system is to optimize a target algorithm’s performance

on a given class of problem instances by varying a set of ordinal and/or categorical

parameters. We measured performance as a function of quality and solution time. We

made slight adjustments to the settings found by ParamILS based on our knowledge of

our search procedure. The parameter values that we used for our experimentation are

shown in Table 5. The penalty value is about 4 times the maximum cost in the networks.

Table 5: Parameters values in experimentation.

maxIter minIterIP maxNets penalty α β δ γ

100 20 5%|S| 6000 50% 95% 2% 30%

To set the size of the solution pool, we conducted a series of experiments. Concretely,

we used the instances of size 30% to test four different pool size values (16, 32, 48,

and 64). The results are summarized in Figure 19 (a) and (b), where violin plots show,

for each difficulty level and pool size, the distribution of the optimalitiy gap and the

speed-up with respect to Gurobi’s solutions. Given the m−th instance and the k−th

execution of our heuristic procedure on that instance, the optimality gap is computed

as 100
zh
m,k−z

IP
m

zIP
m

, where zh
m,k and zIP

m denote the objective function values for the solutions

found with our heuristic and with Gurobi, respectively. Similarly, the speed-up is com-

puted as tIPm
thm,k

, where thm,k and tIPm denote the wall time required by our procedure and

the one required by Gurobi, respectively.

Figure 19 (a) shows the importance of the pool size as the difficulty of the problem

increases. Larger pool sizes achieve smaller optimality gaps with lower variability. For

instance, for a pool size of 64, the optimality gap is always less than 5%.

The dashed line in Figure 19 (b) shows the speed-up value of 1, which is when the

heuristic solution time is the same as Gurobi’s. Values below this line mean that the

optimal solution was found and confirmed faster than the running time of the heuristic.

This happened in some of the easy cases, particularly, for the two largest pool sizes.

The heuristic finished before Gurobi in the medium and difficult instances. The run-

4.2 computational results 103

time difference is more significant in difficult cases, where the minimum speed-up is

1.5.

e
a

sy
m

e
d

iu
m

d
iffi

cu
lt

1
6

3
2

4
8

6
4

1
6

3
2

4
8

6
4

1
6

3
2

4
8

6
4

0
.0

%

5
.0

%

1
0

.0
%

1
5

.0
%

2
0

.0
%

p
o
o
l s

iz
e

optimality gap (%)

D
is

tr
ib

u
ti
o
n
 o

f
th

e
 o

p
ti
m

a
lit

y
 g

a
p

a

e
a

sy
m

e
d

iu
m

d
iffi

cu
lt

1
6

3
2

4
8

6
4

1
6

3
2

4
8

6
4

1
6

3
2

4
8

6
4

246

p
o
o
l s

iz
e

speed-up

D
is

tr
ib

u
ti
o
n
 o

f
th

e
 s

p
e
e
d
-u

p
b

Figure 19: Effect of the pool size for instances of size 30%.

104 computational experience

In terms of computational effort, we observed that our parallelization scheme for gen-

erating the pool of solutions scaled linearly. That is, twice as much time is required to

generate the same amount of solutions with half the threads. This fact will be important

when analyzing the insights of the algorithm later on.

Extrapolating from the experiments with instances of size 30% and in order to balance

solution quality and computational effort, we chose a pool of 80 solutions for instances

of size 65% and a pool of 96 solutions for instances with the complete flight plans.

4.2.2.2 Performance assessment

We used the smallest problem instances to find the best values for our search parameters

as well as adjusting the size of the solution pool. We now assess the performance of the

procedure with the larger problem instances. As shown in Table 4, Gurobi was able to

solve 28 of the 36 instances of size of 65% of the original flight plans, namely all the sets

for January and the “easy” and “medium” sets for May and September. Therefore, we

are able to calculate optimally gaps and speed-up values when applying our procedure

to these problem instances. Figure 20 (a) and (b) summarize the results.

65%

easy medium difficult

0.0%

3.0%

6.0%

9.0%

12.0%

instance difficulty

o
p
tim

a
lit

y
g
a
p
 (

%
)

Distribution of the optimality gapa

65%

easy medium difficult

1

2

3

instance difficulty

sp
e
e
d
-u

p

Distribution of the speed-upb

Figure 20: Results of the algorithm for instances of size 65% that exact methods could also solve.

The first figure shows that the proposed heuristic generates high-quality solutions

for these instances. For the easy cases, the heuristic solutions are, on average, less than

4.2 computational results 105

3% away from optimality. For the medium cases, in more than 75% of the times the

optimality gap is below 9% and the average is less than 7.5%. For the difficult cases, the

optimality gap is below 10%, with an average of 8.5%. In terms of computational effort,

our speed-up calculation shows that the heuristic was faster than the exact method

in the medium and difficult cases, but not in the easy ones. It is interesting to point

out that in the instances when the proposed heuristic is faster than the exact method,

Gurobi is still solving the LP relaxation at the root node when the heuristic has already

finished.

A possible conclusion from these results is that Gurobi should be the preferred

method to solve the easy problems, since it can confirm optimality before our proce-

dure finishes. However, this result depends on the cost structure. Recall that when we

used randomly generated costs, Gurobi was only able to solve 24 out of the 108 test

problems. A comparison of optimality gap and speed-up between our procedure and

Gurobi for those 24 instances is shown in Figure 21 (a) and (b). We observe that, under

this cost structure, the solutions achieved by our procedure are near-optimal, and they

are reached faster than Gurobi (with a minimum speed-up of 1.5).

30%

easy medium difficult

0.00%

0.20%

0.40%

0.60%

instance difficulty

o
p
tim

a
lit

y
g
a
p
 (

%
)

Distribution of the optimality gapa

30%

easy medium difficult

2

4

6

8

instance difficulty

sp
e
e
d
-u

p

Distribution of the speed-upb

Figure 21: Results using a random cost structure.

This experiment shows that the performance of the exact method within Gurobi is

sensitive to the cost structure. On the other hand, our heuristic-based approach ex-

hibits a robust performance across cost structures. Furthermore, we observed that the

106 computational experience

solutions that we found after the combination method have an optimality gap of 1%.

Therefore, in cases where computational time is limited, it would seem sensible to skip

the local search phase when tackling problems with this cost structure.

For the flight plans of May and September under the difficult scenario in the 65% set,

and all the instances in the 100% set, Gurobi, due to memory limitations, was unable to

even solve the LP relaxation of the problem. Therefore, we were not able to assess the

quality of our solutions with the lower bound corresponding to the LP relaxation. We at-

tempted to find solutions for these instances with LocalSolver ([93]), a general-purpose

optimizer based on metaheuristic principles and methodologies, but this software also

failed to handle them. In order to obtain lower bounds, we employed the Lagrangian

Relaxation resulting from dualizing the capacity constraints as described in Subsec-

tion 3.3.3.2. Recall from Corollary 2 that the optimum of the Lagrangian dual problem

is guaranteed to be equal to the LP relaxation of the IP formulation of the SRC-MSPP

(model (3.5)-(3.8) on page 57). Based on the gaps reported in Table 3 and 4, the lower

bounds resulting from the Lagrangian Relaxation are expected to be tight.

We attempted to solve the Lagrangian Relaxation using the subgradient and surrogate

methods discussed at the end of Subsection 3.3.3.1. For the subgradient, the step size

rule given by θj = µj
zLR∗−z(λj)
‖φj‖2 was employed. In preliminary experiments, none of

the two methods exhibited a good behavior with the common parameters specified in

literature, so we decided just to focus on the subgradient method, but using a dynamic

step size rule. Concretely, we started with a big value of µj and reduced it after every

300 iterations. Using big µj values at the beginning of the subgradient method was

established after observing that term ‖φj‖2 was too big, leading to small step sizes

at each iteration and a bad global convergence. Big µj values solved that issue, but

keeping them during the whole algorithm produced an erratic behavior and prevented

from convergence, hence the reduction step after every 300 iterations. As an example,

the next sequence of values was employed for µj when solving some of the instances:

300, 150, 70, 30 and 5. Regarding the stopping rule of the subgradient method, we

stopped when one of the next conditions hold: i) The number of iterations was greater

than 5, 000, ii) The distance between multipliers was less than 10−6, or iii) An optimal

solution (either primal or dual) was reached.

Despite the modifications done to the subgradient method, we still noticed the fol-

lowing difficulties:

4.2 computational results 107

1. The sequence of µj values employed depended on the difficulty of the problem to

solve.

2. The algorithm required long solution times just to obtain lower bounds, i. e., no

primal feasible solutions were produced at any moment.

These points make that the methods based on the Lagrangian Relaxation require

further research to become a feasible option to address the problem, and not just to

provide lower bounds. In this respect, Chapter 5 exposes some possible solutions to

explore.

Respect to the results obtained, Figure 22 shows, for each instance and size group,

the gap between all the solutions found throughout our experimentation and the La-

grangian bound. The dashed line is the mean gap of the heuristic solution with respect

to the Lagrangian bound. The band around the mean represents the range of gaps ob-

tained from the 5 runs of our procedure. Similarly, the solid line in the figure shows the

gap of Gurobi’s solutions (when available) with the Lagrangian bound.

The general observation from Figure 22 is that the deviation from the Lagrangian

bounds increases with the size of the problem. This is true for both the heuristic and

the optimal solutions. For the full flight plans, our procedure obtained, in the worst case,

solutions with average gaps of 16%. However, in most cases the gap varied between 4%

and 14.5%. Considering that these gaps are against a lower bound and not the optimal

solution, these results are more than reasonable for the practical application that we

studied.

For the sake of completeness, we show in Table 6 the results of the matheuristic

algorithm for the cases that Gurobi could not solve due to memory limitations.

The first four columns of the table show the date of the flight plan, the percentage of

flights chosen from the flight plan, the level of difficulty and the capacity reduction due

to the storm. This is followed by z̄, the solution’s average objective function value in

the 5 runs. ∆z is the gap between the best and worst solution obtained in the 5 runs. It

measures how much changes the solution between executions. Column t̄ is the average

wall time in seconds to obtain the solution, and column ∆t is the ratio between the

worst and best solution times obtained. As happens with ∆z , this is a measure of the

robustness of the algorithm.

Respect to the values of the table: i) ∆z values are most of the times around 2%,

meaning that there is not much variability in the quality of the solution between runs,

ii) In the worst case, the average computational time is below 40 minutes, being less

108 computational experience

than 25 minutes in 32 of the 44 instances. These times, which are within the valid range

for ATFM, show the capability of the algorithm to tackle big and difficult instances of

the problem. And iii) ∆t shows that computational times between runs do not differ

excessively. Only in 12 out of 44 instances the variation was larger than 15%.

1
0

0
%

6
5

%

3
0

%

0
.0

%

2
.5

%

5
.0

%

7
.5

%

1
0

.0
%

0
.0

%

5
.0

%

1
0

.0
%

1
5

.0
%

0
.0

%

4
.0

%

8
.0

%

1
2

.0
%

1
6

.0
%

In
st

a
n
c
e
s

Gap with Lagrangian bound (%)

S
o
lu

tio
n

O
p

tim
a

l
A

ve
ra

g
e

 a
lg

o
ri

th
m

R
a

n
g

e
 a

lg
o

ri
th

m

Figure 22: Deviation from Lagrangian lower bounds.

4.2 computational results 109

Table 6: Subset of instances solved only by the algorithm.
Flight plan Size Difficulty Reduction z̄ ∆z t̄ ∆t
May 65% difficult 10% 3855.34 1.74% 747.33 1.15

May 65% difficult 20% 4165.98 2.88% 783.06 1.08

May 65% difficult 30% 5069.83 1.62% 908.54 1.09

May 65% difficult 40% 7479.85 1.82% 1207.91 1.06

Sep 65% difficult 10% 4722.99 1.28% 752.46 1.14

Sep 65% difficult 20% 5140.61 1.07% 777.71 1.16

Sep 65% difficult 30% 6034.70 1.14% 959.48 1.13

Sep 65% difficult 40% 8001.80 1.93% 1259.62 1.31

Jan 100% easy 10% 47.23 4.62% 765.30 1.08

Jan 100% easy 20% 50.27 4.72% 781.46 1.06

Jan 100% easy 30% 94.05 4.66% 669.44 1.06

Jan 100% easy 40% 156.08 2.78% 683.83 1.06

Jan 100% medium 10% 2543.51 2.13% 951.27 1.18

Jan 100% medium 20% 2552.13 1.27% 974.65 1.08

Jan 100% medium 30% 2617.34 1.15% 955.93 1.15

Jan 100% medium 40% 2683.86 1.47% 947.25 1.12

Jan 100% difficult 10% 5418.48 1.55% 1794.73 1.16

Jan 100% difficult 20% 5678.10 1.01% 1811.53 1.14

Jan 100% difficult 30% 6241.71 1.00% 1978.41 1.29

Jan 100% difficult 40% 7321.88 1.44% 2193.39 1.25

May 100% easy 10% 165.86 5.10% 861.24 1.07

May 100% easy 20% 561.57 3.21% 1087.71 1.16

May 100% easy 30% 1637.88 1.07% 1689.4 1.08

May 100% easy 40% 3827.27 1.12% 1233.41 1.08

May 100% medium 10% 2236.06 1.10% 902.00 1.08

May 100% medium 20% 2691.73 1.75% 942.26 1.04

May 100% medium 30% 3841.26 1.71% 1041.81 1.05

May 100% medium 40% 6365.82 2.69% 1254.65 1.05

May 100% difficult 10% 4728.95 0.70% 1356.94 1.05

May 100% difficult 20% 4913.83 2.02% 1390.09 1.11

May 100% difficult 30% 5394.70 2.27% 1502.27 1.12

May 100% difficult 40% 6734.75 3.16% 1639.46 1.15

Sep 100% easy 10% 118.97 2.45% 841.09 1.08

Sep 100% easy 20% 425.72 3.65% 1079.66 1.06

Sep 100% easy 30% 1333.18 1.54% 1270.19 1.21

Sep 100% easy 40% 3794.71 1.51% 1687.39 1.20

Sep 100% medium 10% 3118.49 1.39% 952.18 1.05

Sep 100% medium 20% 3454.52 0.61% 944.66 1.06

Sep 100% medium 30% 4484.01 0.97% 1143.31 1.07

Sep 100% medium 40% 7046.61 0.95% 1515.47 1.13

Sep 100% difficult 10% 6264.73 0.56% 1421.54 1.09

Sep 100% difficult 20% 6970.70 0.74% 1535.93 1.12

Sep 100% difficult 30% 8678.90 1.77% 1718.51 1.22

Sep 100% difficult 40% 11981.68 2.51% 2336.88 1.12

110 computational experience

4.2.2.3 Insight analysis of the matheurisitic

The preceding results show that we are able to produce high-quality solutions in reason-

able computational times, and that our procedure was able to find solutions to problems

that a commercial solver could not handle. The purpose of the following analysis is to

provide insights into the performance of our procedure.

Figure 23 shows the average percentage of time that our procedure employs in each

phase, as a function of the problem size and the level of difficulty.

easy medium difficult

30% 65% 100% 30% 65% 100% 30% 65% 100%

0%

25%

50%

75%

100%

problem size

%
 o

f
tim

e
 e

m
p
lo

ye
d

phase

Pool

Combine

Local

Figure 23: Percentage of solution time in each phase of the proposed solution procedure.

We observe that: 1) The solution pool generation represents the bottleneck, consum-

ing consuming from 52% to 79% of the solution time; 2) Combining solutions consumes

a negligible amount of time (2.5% in the worst case); and 3) The time required by local

search is sensitive to the difficulty of the problem, ranging from 21% to 46% for the

biggest and most difficult instances.

The good news of the solution pool generation being the procedure’s bottleneck is

that, as mentioned before, the parallelization of this phase linearly scales with the num-

ber of threads. This means that when generating a pool of 96 solutions, if instead of 8

threads we had 48, the time in this phase would have been 1
6 of the time that we report.

4.2 computational results 111

In such situation, the procedure will most likely also outperform in time to the plain

usage of the solver in the easy cases. Furthermore, if a larger number of threads was

available, the procedure could be set up to generate more solutions, which in turn could

improve the quality of the results while maintaining the time performance.

Figure 24 (a) and (b) shows the percentage of improvement in solution quality achieved

after each phase of the procedure, as a function of the problem size and difficulty level.

e
a

sy
m

e
d

iu
m

d
iffi

cu
lt

3
0

%
6

5
%

1
0

0
%

3
0

%
6

5
%

1
0

0
%

3
0

%
6

5
%

1
0

0
%

2
0

%

4
0

%

6
0

%

8
0

%

p
ro

b
le

m
 s

iz
e

% of improvement

C
o
m

b
in

a
ti
o
n
 p

h
a
s
e

a

e
a

sy
m

e
d

iu
m

d
iffi

cu
lt

3
0

%
6

5
%

1
0

0
%

3
0

%
6

5
%

1
0

0
%

3
0

%
6

5
%

1
0

0
%

0
.0

%

2
.0

%

4
.0

%

6
.0

%

8
.0

%

p
ro

b
le

m
 s

iz
e

% of improvement

L
o
c
a
l
S

e
a
rc

h
 p

h
a
s
e

b

Figure 24: Improvement achieved after each phase of the proposed procedure.

112 computational experience

Figure 24 (a) reveals the large improvement achieved by the solution combination

phase, particularly as the difficulty of the problem increases. The large solution-quality

improvement combined with the modest amount of computational time make this

phase one of the key elements for the success of the solution method.

When compared to the solution combination phase, the local search achieves a sig-

nificantly smaller improvement in solution quality. This is mainly due to the reduced

opportunities for improvement after solutions are combined. Nonetheless, the improve-

ment achieved by the local search justifies its computational requirements and therefore

its inclusion as part of the solution process.

For the pool sizes employed, it was exposed before how the algorithm proposed

achieved good optimality gaps. Table 7 and 8 show that these gaps can be further re-

duced by simply using larger pool sizes. Concretely, we employed pools of 200 solutions

for the instances of size 30%, and 300 for instances of size 65%. In this case, the results

in the tables correspond to a single run of the algorithm.

The first three columns of each table show the date of the flight plan, the level of

difficulty and the capacity reduction due to the storm. The next one (z) shows the

solution’s objective function value. Gap stands for the optimality gap. Columns tPool,

tComb, tLS are, respectively, the time in seconds required by the algorithm in the phases

of: Generating the pool of solutions, combining the solutions in the pool and local

search. The last column, t, shows the total time in seconds required by the algorithm.

As can be seen, for the pool sizes employed in this part of the experimentation, all

the gaps were below 7%, being only larger than 2% in 16 of the 64 instances. That

is, the algorithm proposed is capable of finding near-optimal solutions when using

a sufficiently large pool. Respect to the computational times, note that: 1) The pool

generation, as expected, keeps being the bottleneck of the algorithm, and 2) Except for

7 instances, the computational time was less than 30 minutes. These times are valid for

the ATFM application, but larger than the times required by Gurobi. Thus, larger pool

sizes result in near-optimal solutions, but large pool sizes are only recommended when

a computer with more than 8 threads is available.

To conclude the analysis of the proposed procedure, we point out that we designed

the algorithmic elements to take advantage of the structure of the problem. In particular,

the generation of the solution pool exploits a very specific characteristic of our problem,

which turns out to also be true in the context of the resource constrained shortest path

problem. In general, the least expensive arcs are also those that consume the most

limited resources at a higher rate. The key is to generate a set of diverse solutions that

4.2 computational results 113

include the use of arcs with limited or nonexistent consumption of the most limited

resources. Typically, these arcs are the most costly or else the trivial solution in which

all origins and destinations are connected by their shortest paths would be feasible

and therefore optimal. The controlled random element included in the generation of

solutions results in a diversity of arcs in the solution pool that is then exploited by the

combination method.

Table 7: Algorithm results for instances of size 30% when using a pool of 200 solutions.
Flight plan Difficulty Reduction z Gap tPool tComb tLS t

Jan easy 10% 54.08 0.26% 174.06 0.35 42.65 217.06

Jan easy 20% 140.71 0.00% 234.53 0.38 42.09 276.99

Jan easy 30% 346.72 0.56% 436.48 0.45 45.90 482.83

Jan easy 40% 801.51 0.25% 616.50 0.71 48.54 665.74

Jan medium 10% 1435.24 1.18% 247.95 2.10 51.22 301.26

Jan medium 20% 1563.68 0.38% 264.04 2.36 53.83 320.23

Jan medium 30% 1858.28 0.64% 340.51 2.55 56.09 399.15

Jan medium 40% 2584.16 0.53% 384.88 4.11 58.67 447.67

Jan difficult 10% 2353.34 0.91% 298.06 5.33 54.74 358.13

Jan difficult 20% 2432.39 1.56% 294.46 5.86 57.95 358.26

Jan difficult 30% 2529.71 0.94% 325.39 6.62 64.93 396.94

Jan difficult 40% 2816.06 1.33% 334.72 9.42 78.39 422.54

May easy 10% 68.70 0.00% 283.75 0.46 53.32 337.53

May easy 20% 199.46 1.98% 363.43 0.52 53.92 417.87

May easy 30% 578.22 0.19% 769.83 0.66 60.18 830.68

May easy 40% 1457.59 0.08% 807.41 1.13 56.99 865.53

May medium 10% 1409.47 1.48% 342.16 2.23 51.93 396.31

May medium 20% 1581.44 1.39% 428.45 2.68 52.16 483.29

May medium 30% 1977.48 1.10% 442.06 3.08 54.85 499.99

May medium 40% 2775.31 1.10% 523.70 4.49 68.40 596.58

May difficult 10% 2722.61 1.44% 629.78 9.24 80.27 719.29

May difficult 20% 2812.17 1.99% 645.85 10.53 74.48 730.86

May difficult 30% 3135.97 1.91% 640.23 16.98 76.44 733.65

May difficult 40% 3801.92 0.72% 625.42 24.13 91.58 741.13

Sep easy 10% 83.08 0.91% 409.54 0.45 54.54 464.53

Sep easy 20% 152.74 0.00% 421.65 0.46 53.36 475.46

Sep easy 30% 379.46 0.05% 581.61 0.53 46.93 629.08

Sep easy 40% 895.02 0.30% 680.48 0.80 51.86 733.15

Sep medium 10% 1016.61 1.30% 233.17 0.93 53.06 287.16

Sep medium 20% 1117.07 1.08% 267.70 1.02 47.74 316.45

Sep medium 30% 1305.57 1.40% 278.67 1.13 53.04 332.84

Sep medium 40% 1650.21 0.89% 337.18 1.55 58.73 397.46

Sep difficult 10% 2498.53 1.15% 510.83 7.06 65.01 582.90

Sep difficult 20% 2655.36 1.36% 491.01 7.66 71.41 570.08

Sep difficult 30% 2937.15 1.27% 556.60 11.71 76.86 645.16

Sep difficult 40% 3531.24 1.55% 581.91 21.73 97.04 700.69

114 computational experience

Table 8: Algorithm results for instances of size 65% when using a pool of 300 solutions.
Flight plan Difficulty Reduction z Gap tPool tComb tLS t

Jan easy 10% 63.94 0.00% 919.43 0.77 117.71 1037.91

Jan easy 20% 137.28 0.00% 1068.11 0.80 114.78 1183.69

Jan easy 30% 463.82 0.37% 1454.79 0.97 122.82 1578.58

Jan easy 40% 1373.50 0.34% 1870.31 1.61 122.99 1994.91

Jan medium 10% 2315.04 5.69% 1042.12 2.77 145.56 1190.45

Jan medium 20% 2464.53 6.45% 1014.33 3.25 160.20 1177.78

Jan medium 30% 2982.49 5.95% 1155.65 4.56 177.05 1337.26

Jan medium 40% 4125.23 3.33% 1328.93 8.01 225.94 1562.88

Jan difficult 10% 4080.30 4.04% 1280.86 14.49 241.28 1536.63

Jan difficult 20% 4256.71 4.35% 1283.01 18.02 253.55 1554.58

Jan difficult 30% 4623.09 4.01% 1372.58 21.12 280.21 1673.91

Jan difficult 40% 5310.65 3.19% 1600.57 35.85 251.57 1887.99

May easy 10% 114.83 0.88% 1090.78 1.00 133.28 1225.06

May easy 20% 415.99 0.85% 1490.67 1.15 146.18 1637.99

May easy 30% 1145.14 0.94% 2739.68 1.63 141.49 2882.80

May easy 40% 2765.46 0.51% 2572.17 3.22 152.80 2728.19

May medium 10% 2188.75 4.19% 1520.24 3.53 199.58 1723.35

May medium 20% 2689.60 4.54% 1847.65 4.70 212.12 2064.47

May medium 30% 3794.71 2.88% 2697.38 7.96 237.96 2943.30

May medium 40% 5950.58 2.37% 3547.94 15.1 293.16 3856.20

Sep easy 10% 41.06 0.00% 1455.26 0.92 124.48 1580.66

Sep easy 20% 46.67 0.00% 1509.18 0.92 126.32 1636.42

Sep easy 30% 71.64 0.00% 1537.06 0.91 126.15 1664.11

Sep easy 40% 114.07 0.00% 1591.90 0.93 125.99 1718.82

Sep medium 10% 2505.77 3.84% 1133.80 3.82 153.67 1291.29

Sep medium 20% 2616.56 3.69% 1173.49 3.92 163.08 1340.49

Sep medium 30% 2890.33 3.44% 1151.64 4.27 171.74 1327.65

Sep medium 40% 3686.11 2.88% 1385.44 6.15 150.68 1542.27

4.2.3 Flight Plans Modifications

We conclude the chapter by showing the flight plans modifications obtained in one

execution of the algorithm. The results for the instances of size 30%, 65% and 100% are

shown in Table 9, 10 and 11, respectively.

The first three columns of each table show the date of the flight plan, the level of

difficulty and the capacity reduction due to the storm. The next one (Fm) shows the

number of flights with at least one modification respect to their original flight plan. The

next two columns show the number of flights which were assigned some ground delay

(Fg), distinguishing between those which also landed late (Fg,l) and those which did

not (Fg,l), i. e., which landed on time or earlier than scheduled. The next two columns

4.2 computational results 115

show the number of flights which changed their speed (Fsc), distinguishing between

delays (Fd) and speed increases (Fi). Finally, the last two columns show the number of

flights arriving at destination in a different time than scheduled (Fad), distinguishing

between late (Fl) and early (Fe) arrivals.

The following observations relate to the values in the tables:

1. The number of modified flights (Fm) never exceeded the 17%, being less than 10%

in 82 cases out of 108.

2. The number of modified flights is less than the sum of flights with ground delay

(Fg), speed change (Fsc) and lading out of schedule (Fad). This is because some of

the flights suffered from multiple modifications simultaneously.

3. No information about the alternative routes is shown because their usage was not

required in the solution. Alternative routes have a high cost so conflicts are solved

(when possible) just by means of time-schedule modifications, as occurs in daily

operations.

4. Ground delays (Fg) were more used than air delays (Fd). This is customary in

ATFM operations given that ground delays are safer than air delays.

5. Column Fg,l shows that most of the late departures resulted in a late landing.

6. Column Fg,l shows how many times a late departure was compensated through a

speed increase (Fi). The rest of the times, speed increases were used to compensate

delays, but without forcing to land on time. That is, it is preferable to land a little

bit later than continuously be changing the speed.

7. Most of the speed changes (Fsc) are speed increases (Fi). These are to compensate

as much as possible, any type of delay and reduce the late arrivals.

8. The number of late landings (Fl) not explained by the ground (Fg,l) and air (Fd)

delays are because of the propagation-delay effect that occurs with continued

flights.

9. Most of the arrivals at destination out of schedule (Fad) are late landings (Fl).
Early landings (Fe) are to reduce the number of continued flights suffering from

the propagation-delay effect.

116 computational experience

Table 9: Flight modifications in the solution of the algorithm for instances of size 30%.
Fg Fsc Fad

Flight plan Difficulty Reduction Fm Fg,l Fg,l Fd Fi Fl Fe
Jan easy 10% 16 8 3 1 6 9 1

Jan easy 20% 38 16 10 1 18 19 4

Jan easy 30% 81 36 14 2 37 48 8

Jan easy 40% 172 72 24 7 74 106 18

Jan medium 10% 429 151 81 5 188 251 43

Jan medium 20% 467 156 76 6 202 279 55

Jan medium 30% 515 179 86 8 219 306 58

Jan medium 40% 639 222 85 9 265 398 75

Jan difficult 10% 680 249 97 12 260 441 58

Jan difficult 20% 691 250 104 10 279 433 68

Jan difficult 30% 708 249 120 14 287 441 63

Jan difficult 40% 736 258 115 22 307 452 79

May easy 10% 21 8 6 0 8 13 0

May easy 20% 45 15 13 0 24 23 2

May easy 30% 114 32 32 0 66 54 17

May easy 40% 241 68 54 3 136 128 31

May medium 10% 399 142 77 12 187 225 37

May medium 20% 442 147 103 16 215 232 45

May medium 30% 515 172 100 14 246 286 57

May medium 40% 630 212 123 16 306 357 73

May difficult 10% 753 264 133 15 345 440 75

May difficult 20% 755 274 127 14 337 450 85

May difficult 30% 843 300 145 17 370 504 82

May difficult 40% 948 355 145 15 419 580 94

Sep easy 10% 22 5 6 1 9 12 2

Sep easy 20% 31 6 13 1 18 12 3

Sep easy 30% 83 21 26 2 44 39 5

Sep easy 40% 164 41 35 1 86 87 23

Sep medium 10% 271 87 80 2 147 130 25

Sep medium 20% 291 98 79 1 153 149 27

Sep medium 30% 330 109 82 2 167 173 41

Sep medium 40% 388 128 92 3 188 217 41

Sep difficult 10% 703 223 136 10 300 417 56

Sep difficult 20% 714 223 141 10 311 421 62

Sep difficult 30% 786 253 150 13 340 464 68

Sep difficult 40% 854 283 148 11 380 518 87

4.2 computational results 117

Table 10: Flight modifications in the solution of the algorithm for instances of size 65%.
Fg Fsc Fad

Flight plan Difficulty Reduction Fm Fg,l Fg,l Fd Fi Fl Fe
Jan easy 10% 19 8 4 0 10 9 1

Jan easy 20% 42 19 7 1 19 22 4

Jan easy 30% 122 48 28 1 64 63 11

Jan easy 40% 304 114 67 5 167 154 27

Jan medium 10% 639 236 141 11 297 368 52

Jan medium 20% 662 240 140 9 312 375 63

Jan medium 30% 774 279 165 11 357 450 68

Jan medium 40% 983 336 191 21 467 572 103

Jan difficult 10% 1,108 395 206 16 508 661 108

Jan difficult 20% 1,177 422 211 16 505 724 108

Jan difficult 30% 1,213 428 223 15 554 727 121

Jan difficult 40% 1,290 462 235 21 617 754 141

May easy 10% 32 11 12 0 20 12 4

May easy 20% 105 37 31 1 59 48 13

May easy 30% 262 87 75 2 147 127 27

May easy 40% 549 183 112 5 302 294 78

May medium 10% 609 205 171 8 321 302 60

May medium 20% 703 236 181 12 359 353 75

May medium 30% 920 301 226 19 474 470 101

May medium 40% 1,251 400 259 22 643 678 161

May difficult 10% 1,098 368 218 23 494 622 101

May difficult 20% 1,170 392 207 26 499 687 108

May difficult 30% 1,306 435 231 21 585 758 146

May difficult 40% 1,707 569 250 30 751 1,042 196

Sep easy 10% 15 4 5 0 10 5 2

Sep easy 20% 17 4 7 0 12 5 2

Sep easy 30% 22 4 10 1 16 5 4

Sep easy 40% 29 8 10 2 20 9 6

Sep medium 10% 674 226 154 13 319 365 58

Sep medium 20% 712 243 163 13 337 385 58

Sep medium 30% 776 261 168 17 357 432 76

Sep medium 40% 923 345 173 19 415 540 87

Sep difficult 10% 1,250 438 233 16 548 739 117

Sep difficult 20% 1,311 456 241 22 574 771 129

Sep difficult 30% 1,488 503 270 20 665 891 145

Sep difficult 40% 1,733 595 296 26 793 1,033 199

118 computational experience

Table 11: Flight modifications in the solution of the algorithm for instances of size 100%.
Fg Fsc Fad

Flight plan Difficulty Reduction Fm Fg,l Fg,l Fd Fi Fl Fe
Jan easy 10% 14 4 6 0 10 4 3

Jan easy 20% 15 6 5 0 9 6 3

Jan easy 30% 28 10 9 0 18 10 6

Jan easy 40% 45 16 15 0 27 18 9

Jan medium 10% 710 233 186 27 366 342 68

Jan medium 20% 729 241 188 26 376 355 68

Jan medium 30% 735 244 196 24 391 346 73

Jan medium 40% 759 248 195 30 385 370 75

Jan difficult 10% 1,413 497 283 31 649 806 124

Jan difficult 20% 1,452 519 294 34 689 813 127

Jan difficult 30% 1,534 529 310 40 735 850 150

Jan difficult 40% 1,677 579 318 42 797 959 169

May easy 10% 43 14 8 1 22 21 6

May easy 20% 127 43 30 1 70 62 15

May easy 30% 350 120 79 4 186 181 41

May easy 40% 722 235 141 10 387 395 99

May medium 10% 666 219 172 4 333 344 54

May medium 20% 758 248 188 7 378 397 63

May medium 30% 969 327 217 11 478 529 88

May medium 40% 1,337 431 283 15 710 712 162

May difficult 10% 1,323 423 282 20 632 726 117

May difficult 20% 1,355 433 290 17 655 743 119

May difficult 30% 1,433 447 321 13 704 773 134

May difficult 40% 1,598 495 339 24 802 855 164

Sep easy 10% 29 7 13 0 21 8 5

Sep easy 20% 103 34 30 1 59 44 12

Sep easy 30% 288 95 55 0 137 162 36

Sep easy 40% 696 226 100 3 343 390 113

Sep medium 10% 850 299 188 12 412 461 79

Sep medium 20% 908 315 198 17 438 496 81

Sep medium 30% 1,121 395 214 13 530 633 108

Sep medium 40% 1,479 506 243 14 704 846 185

Sep difficult 10% 1,676 616 271 14 679 1,056 139

Sep difficult 20% 1,827 671 283 14 739 1,162 165

Sep difficult 30% 2,079 752 306 28 897 1,294 221

Sep difficult 40% 2,543 930 368 36 1,125 1,586 295

5
C O N C L U S I O N S A N D F U T U R E R E S E A R C H

This thesis has addressed the problem of Air Traffic Flow Management (ATFM) from a

mathematical optimization perspective. We now detail all the contributions and conclu-

sions by chapters.

Chapter 2 introduces the reader to the problem of air traffic saturation and the mech-

anisms that exist to deal with it, in particular, that of ATFM. The chapter also contains

a literature review of the most recent works that employ mathematical optimization to

cope with the ATFM problem. For those works closer to the approach developed in the

thesis, a deeper analysis is provided. The main conclusion obtained in this first part of

the chapter was the necessity of a formulation that overcame some of the limitations

of the current state of the art for the decisions involved at intermediate points of the

flight route. In this respect, we introduce in the chapter two new and equivalent integer

programming formulations for the ATFM problem. Considering the route of a flight as

a sequence of arcs to fly, our formulations are based on incorporating into the decision

variables definition, not only information about the arc employed, but also about the

time leaving and reaching the corresponding tail and head nodes. On top of that, in

the chapter we also present a novel procedure based on a graph of conflicts to detect,

beforehand, routes that will be part of the optimal solution. As conclusions of these two

methodological contributions, in the chapter we show how the integer programming

models proposed provide:

119

120 conclusions and future research

i) A more realistic modelization for the decisions involved at intermediate points of

the flight routes.

ii) The possibility of including non-linear costs while keeping the model linear.

iii) An easy way to model dynamic air sector configurations.

iv) Formulations where most of the constraints define facets of the polytope. Actually,

the second formulation proposed is indeed a shortest path problem in multiple

networks with limited shared resources. A fact that enlarges the range of solving

strategies for the problem.

Respect to the graph of conflicts, despite being an interesting idea, it did not provide

any computational time advantage when using it. Thus, its validity in this sense is

limited. Nevertheless, as described in the future lines of research, a better coding of the

algorithm employed to build and explore the graph could revert the situation.

Chapter 3 contains the following contributions: 1) Introducing a family of shortest

path problems that, to the best of our knowledge, has not been previously studied in

optimization literature: the Shared Resource Constrained Multi-Shortest Path Problem

(SRC-MSPP). 2) Extending some of the results in Chapter 2 by demonstrating how the

SRC-MSPP can be used to solve, in addition to ATFM problems, some types of project

scheduling problems. And 3) Studying two solution methods for the SRC-MSPP, one

based on matheuristics, and the other based on Lagrangian relaxations. Respect to the

latter, two different relaxations are studied, one resulting from dualizing the capacity

constraints in the SRC-MSPP integer programming model (3.5)-(3.8), and the other re-

sulting from dualizing a copy of the decisions variables. The conclusions obtained in

this chapter are:

i) The SRC-MSPP, as corroborated by the computational experience, has strong LP

relaxation.

ii) Despite similarities with the Resource Constrained Shortest Path Problem, the SRC-

MSPP has important particularities, e. g., the structure of the solutions.

iii) The SRC-MSPP permits to incorporate multiple features at the same (e. g., execu-

tion modes or alternative sequences of activities) when modeling project schedul-

ing problems.

conclusions and future research 121

iv) The matheuristic is designed to take advantage of multi-core computers, and to

exploit the structure of the problem where the least expensive arcs are also those

that consume the most limited resources at a higher rate.

v) Both Lagrangian relaxations presented have interesting subproblem structures and

theoretical properties.

Chapter 4 includes as main contributions: 1) The generation (and released for free

disposal) of ATFM instances, 2) The empirical validation of the results obtained in the

previous chapters of the thesis, and 3) Insights on how and why the proposed solution

methods worked the way they did. The conclusions of this chapter are:

i) Commercial MIP solvers are capable of tackling instances of the ATFM problem up

to a certain size in acceptable computational times.

ii) The matheuristic proposed is shown to: a) Be capable of solving all the instances

proposed (regardless of size and difficulty) in times that are feasible for the ATFM

problem, b) Obtain high-quality solutions for the pool sizes employed, c) Outper-

form in time to exact methods in most of the occasions, d) Exhibit a robust perfor-

mance under different cost structures, e) Largely benefit from the parallel design,

and f) Be able to improve the quality of any solution by simply using a larger pool

size.

iii) The Lagrangian relaxations proposed require further research. The relaxation based

on dualizing the capacity constraints of the SRC-MSPP, although useful to obtain

lower bounds with which to compare the proposed matheuristic, showed some

limitations that make it not suitable, for the moment, to become a competitive

solution method for the problem. For the relaxation based on dualizing a copy of

the decision variables, no conclusions were obtained because computational results

are part of the future lines of research.

iv) The flight plan modifications obtained with the IP formulations proposed are co-

herent with practical ATFM operations.

122 conclusions and future research

After summarizing the conclusions and contributions made in the thesis, we identify

the following topics for future research:

1. Further exploring the idea of the graph of conflicts. This includes two keypoints.

The first one is re-coding the algorithm that builds and explores the graph so these

operations can be done faster. In order words, that the time trade-off when using

the graph of conflicts becomes beneficial. The second point is obtaining some

other information of the graph such as its connectivity. This is oriented to find

clusters of nodes connected to each other just by a few arcs. Thus, removing those

few arcs (i. e., relaxing the associated capacity constraints in the problem), would

lead to independent components (i. e., independent subproblems to be solved).

2. Keep testing the matheuristic proposed. Although the computational experience

showed a good performance of the algorithm for different sizes and difficulties,

conducting more tests will help to obtain more reliable conclusions. This line of

research includes testing the algorithm with: i) The instances of Dal Sasso et al.

[34], and ii) Other types of project scheduling problems where the algorithm can

be applied.

3. Extending the results in Chapter 3 to tackle project scheduling problems with a

general structure of predecessor and successor activities. As pointed out in the

chapter, the SRC-MSPP can incorporate multiple features when dealing when

project scheduling problems, but it is limited to projects with serial sequences

of activities. Thus, to enlarge the range of applicability while maintaining the

network structure, we think that the solution passes through working with gener-

alized networks and minimum cost flow problems, instead of shortest paths. That

way, most of the algorithm proposed would still be valid to solve other types of

project scheduling problems.

4. Continue studying the Lagrangian relaxation as an independent solution method

for the problem and not just to obtain lower bounds. This implies, on the one

hand, obtaining computational results for the relaxation based on dualizing a copy

of the decision variables (recall in Subsection 3.3.3.2). And, on the other hand,

fixing the problems described in Subsection 4.2.2.2 for the relaxation resulting

from dualizing the capacity constraints. For the latter, the options that we want to

explore are:

conclusions and future research 123

a) Testing other updating rules for the Lagrangian multipliers. In the compu-

tational experience, two methods were tested, both based on obtaining sub-

gradients and employing their squared norm to determine the step size with

which to update the multipliers. As the norm values were always too big,

these methods exhibited slow convergence rates, leading to long computa-

tional times. Thus, for the Lagrangian relaxation to become a feasible solution

option, other rules that do not exhibit this problem have to be tested.

b) Developing a heuristic algorithm based on repairing infeasible solutions. To

guarantee that when solving the Lagrangian relaxation we finish with a fea-

sible solution for the original problem, we should be able to employ the

(expected) infeasible solutions obtained at each step of the relaxation and

transform them into feasible ones.

c) Incorporating to the relaxation the idea of the graph of conflicts. Particularly,

that described before about finding clusters of nodes connected to each other

just by a few arcs. That way, instead of relaxing all the capacity constraints,

we could relax small subsets based on this information. This would make it

more likely to obtain feasible solutions for the original problem.

5. Exploring the stochastic version of the SRC-MSPP. That is, the version in which

different sources of uncertainty are considered. Respect to this line of research,

our plans include:

a) Incorporating uncertainty into the capacity of the resources and, when mod-

eling scheduling problems such as ATFM, into the execution time of the

activities. Notice the importance of these two facts in order to obtain more

robust and realistic schedules.

Our primary intention is to tackle the stochastic version of the problem via

scenario trees. This motivates the following point.

b) Extending the matheuristic proposed (or studying new algorithms) for the

stochastic version of the problem. Concretely, we intend to explore its inte-

gration with the branch-and-fix coordination algorithm proposed in Alonso-

Ayuso, Escudero, and Ortuño [9].

c) Studying the behavior of the problem under different risk measures, e. g.,

Shortfall Probability, Value-at-risk, etc.

B I B L I O G R A P H Y

[1] NR Achuthan and A Hardjawidjaja. “Project scheduling under time dependent

costs–A branch and bound algorithm.” In: Annals of Operations Research 108.1-4

(2001), pp. 55–74.

[2] Alba Agustín. “Mathematical optimization in air traffic flow management un-

der uncertainty.” PhD thesis. Department of Statistics and Operations Research,

Universidad Rey Juan Carlos, Spain, 2011.

[3] Alba Agustín, Antonio Alonso-Ayuso, Laureano F Escudero, and Celeste Pizarro.

“Mathematical optimization models for air traffic flow management: A review.”

In: Studia Informatica Universalis 8.2 (2010), pp. 141–184.

[4] Alba Agustín, Antonio Alonso-Ayuso, Laureano F Escudero, and Celeste Pizarro.

“On air traffic flow management with rerouting. Part I: Deterministic case.” In:

European Journal of Operational Research 219.1 (2012), pp. 156–166.

[5] Alba Agustín, Antonio Alonso-Ayuso, Laureano F Escudero, Celeste Pizarro, et

al. “On air traffic flow management with rerouting. Part II: Stochastic case.” In:

European Journal of Operational Research 219.1 (2012), pp. 167–177.

[6] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows: the-

ory, algorithms, and applications. English. Upper Saddle River (New Jersey): Pren-

tice Hall, 1993. isbn: 9780136175490;013617549X;

[7] Ravindra K Ahuja, James B Orlin, Stefano Pallottino, and Maria G Scutella. “Dy-

namic shortest paths minimizing travel times and costs.” In: Networks: An Inter-

national Journal 41.4 (2003), pp. 197–205.

[8] Ali Akgunduz, Brigitte Jaumard, and Golbarg Moeini. “Deconflicted Air-Traffic

Planning With Speed-Dependent Fuel-Consumption Formulation.” In: IEEE Trans-

actions on Intelligent Transportation Systems (2017).

[9] Antonio Alonso-Ayuso, Laureano F Escudero, and M Teresa Ortuño. “BFC, a

branch-and-fix coordination algorithmic framework for solving some types of

stochastic pure and mixed 0–1 programs.” In: European Journal of Operational

Research 151.3 (2003), pp. 503–519.

125

126 bibliography

[10] Yash P Aneja and Kunhiraman PK Nair. “Bicriteria transportation problem.” In:

Management Science 25.1 (1979), pp. 73–78.

[11] Hamsa Balakrishnan and Bala G Chandran. “Optimal large-scale air traffic flow

management.” In: unpublished (2014).

[12] Marc Baumgartner. “The organisation and operation of European airspace.” In:

European Air Traffic Management: principles, practice and research. Ed. by Adrew

Cok. Ashgate Publishing, 2007, pp. 1–34.

[13] John E Beasley and Nicos Christofides. “An algorithm for the resource con-

strained shortest path problem.” In: Networks 19.4 (1989), pp. 379–394.

[14] Richard Bellman. Dynamic Programming. 1st ed. Princeton, NJ, USA: Princeton

University Press, 1957.

[15] Richard Bellman. “On a routing problem.” In: Quarterly of applied mathematics

16.1 (1958), pp. 87–90.

[16] Dimitris Bertsimas and Sarah Stock Patterson. “The air traffic flow management

problem with enroute capacities.” In: Operations research 46.3 (1998), pp. 406–422.

[17] Dimitris Bertsimas and Sarah Stock Patterson. “The traffic flow management

rerouting problem in air traffic control: A dynamic network flow approach.” In:

Transportation Science 34.3 (2000), pp. 239–255.

[18] Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization. Vol. 6.

Athena Scientific Belmont, MA, 1997.

[19] Dimitris Bertsimas and Robert Weismantel. Optimization over integers. Vol. 13.

Dynamic Ideas Belmont, 2005.

[20] Dimitris Bertsimas, Guglielmo Lulli, and Amedeo Odoni. “An integer optimiza-

tion approach to large-scale air traffic flow management.” In: Operations research

59.1 (2011), pp. 211–227.

[21] Jean-Charles Billaut, Federico Della Croce, and Andrea Grosso. “A single ma-

chine scheduling problem with two-dimensional vector packing constraints.” In:

European Journal of Operational Research 243.1 (2015), pp. 75–81.

[22] Natashia L Boland and Martin WP Savelsbergh. “Perspectives on integer pro-

gramming for time-dependent models.” In: Top 27.2 (2019), pp. 147–173.

bibliography 127

[23] Mikhail A Bragin, Peter B Luh, Joseph H Yan, Nanpeng Yu, and Gary A Stern.

“Convergence of the surrogate Lagrangian relaxation method.” In: Journal of Op-

timization Theory and applications 164.1 (2015), pp. 173–201.

[24] Pasquale Carotenuto, Stefano Giordani, and Salvatore Ricciardelli. “Finding min-

imum and equitable risk routes for hazmat shipments.” In: Computers & Opera-

tions Research 34.5 (2007), pp. 1304–1327.

[25] Ismail Chabini. “Discrete dynamic shortest path problems in transportation ap-

plications: Complexity and algorithms with optimal run time.” In: Transportation

research record 1645.1 (1998), pp. 170–175.

[26] Alain Chabrier. “Vehicle routing problem with elementary shortest path based

column generation.” In: Computers & Operations Research 33.10 (2006), pp. 2972–

2990.

[27] Yu-Heng Chang, Senay Solak, John-Paul B Clarke, and Ellis L Johnson. “Models

for single-sector stochastic air traffic flow management under reduced airspace

capacity.” In: Journal of the Operational Research Society 67.1 (2016), pp. 54–67.

[28] Athanasios P Chassiakos and Serafim P Sakellaropoulos. “Time-cost optimiza-

tion of construction projects with generalized activity constraints.” In: Journal of

Construction Engineering and Management 131.10 (2005), pp. 1115–1124.

[29] Dan Chen, Minghua Hu, Honghai Zhang, Jianan Yin, and Ke Han. “A network

based dynamic air traffic flow model for en route airspace system traffic flow op-

timization.” In: Transportation Research Part E: Logistics and Transportation Review

106 (2017), pp. 1–19.

[30] Jing Chen, Long Chen, and D Sun. “Air traffic flow management under uncer-

tainty using chance-constrained optimization.” In: Transportation Research Part B:

Methodological 102 (2017), pp. 124–141.

[31] Jun Chen, Yi Cao, and Dengfeng Sun. “Modeling, Optimization, and Operation

of Large-Scale Air Traffic Flow Management on Spark.” In: Journal of Aerospace

Information Systems (2017), pp. 1–13.

[32] Giuseppe Confessore, Stefano Giordani, and Silvia Rismondo. “A market-based

multi-agent system model for decentralized multi-project scheduling.” In: An-

nals of Operations Research 150.1 (2007), pp. 115–135.

128 bibliography

[33] Luca Corolli, Guglielmo Lulli, Lewis Ntaimo, and Saravanan Venkatachalam.

“A two-stage stochastic integer programming model for air traffic flow manage-

ment.” In: IMA Journal of Management Mathematics 28.1 (2017), pp. 19–40.

[34] Veronica Dal Sasso, Franklin Djeumou Fomeni, Guglielmo Lulli, and Konstanti-

nos G Zografos. “Incorporating Stakeholders’ priorities and preferences in 4D

trajectory optimization.” In: Transportation Research Part B: Methodological 117

(2018), pp. 594–609.

[35] Veronica Dal Sasso, Franklin Djeumou Fomeni, Guglielmo Lulli, and Konstanti-

nos G Zografos. “Planning efficient 4D trajectories in Air Traffic Flow Manage-

ment.” In: European Journal of Operational Research 276.2 (2019), pp. 676–687.

[36] Emilie Danna, Edward Rothberg, and Claude Le Pape. “Exploring relaxation in-

duced neighborhoods to improve MIP solutions.” In: Mathematical Programming

102.1 (2005), pp. 71–90.

[37] Federico Della Croce, Fabio Salassa, and Vincent T’kindt. “A hybrid heuristic

approach for single machine scheduling with release times.” In: Computers &

Operations Research 45 (2014), pp. 7–11.

[38] Xudong Diao and Chun-Hsien Chen. “A sequence model for air traffic flow

management rerouting problem.” In: Transportation Research Part E: Logistics and

Transportation Review 110 (2018), pp. 15–30.

[39] Edsger W Dijkstra. “A note on two problems in connexion with graphs.” In:

Numerische mathematik 1.1 (1959), pp. 269–271.

[40] Marco Dorigo. “Optimization, learning and natural algorithms.” In: PhD Thesis,

Politecnico di Milano (1992).

[41] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. “Ant system: optimiza-

tion by a colony of cooperating agents.” In: IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics) 26.1 (1996), pp. 29–41.

[42] Andreas Drexl, Ruediger Nissen, James H Patterson, and Frank Salewski. “Progen/πx–

An instance generator for resource-constrained project scheduling problems with

partially renewable resources and further extensions.” In: European Journal of Op-

erational Research 125.1 (2000), pp. 59–72.

[43] Irina Dumitrescu and Natashia Boland. “Improved preprocessing, labeling and

scaling algorithms for the weight-constrained shortest path problem.” In: Net-

works: An International Journal 42.3 (2003), pp. 135–153.

bibliography 129

[44] EUROCONTROL. 2017 Comparison of ATM-related performance: U.S. – Europe. Ac-

cessed on December 17, 2020. 2017. url: https://www.eurocontrol.int/sites/

default/files/2019-05/us-europe-comparison-operational-performance-

2017.pdf.

[45] EUROCONTROL. Challenges of growth 2018. Accessed on December 17, 2020.

2018. url: https://www.eurocontrol.int/sites/default/files/content/

documents/official-documents/reports/challenges-of-growth-2018.pdf.

[46] EUROCONTROL. Annual Network Operations Report 2018. Accessed on Decem-

ber 17, 2020. 2019. url: https://www.eurocontrol.int/sites/default/files/

2019-11/nm-annual-network-operations-report-2018-main-report.pdf.

[47] EUROCONTROL. Performance Review Report: An Assessment of Air Traffic Man-

agement in Europe during the Calendar Year 2018. Accessed on December 17, 2020.

2019. url: https://www.eurocontrol.int/sites/default/files/2019-06/prr-

2018.pdf.

[48] David Eppstein. “Finding the k shortest paths.” In: SIAM Journal on computing

28.2 (1998), pp. 652–673.

[49] Luis Fanjul-Peyro, Federico Perea, and Rubén Ruiz. “Models and matheuris-

tics for the unrelated parallel machine scheduling problem with additional re-

sources.” In: European Journal of Operational Research 260.2 (2017), pp. 482–493.

[50] Martina Fischetti and Matteo Fischetti. “Matheuristics.” In: Handbook of Heuris-

tics. Ed. by Rafael Martí, Panos M. Pardalos, and Mauricio G. C. Resende. Cham:

Springer International Publishing, 2018, pp. 121–153. isbn: 978-3-319-07124-4.

doi: 10.1007/978-3-319-07124-4_14. url: https://doi.org/10.1007/978-3-

319-07124-4_14.

[51] Matteo Fischetti and Andrea Lodi. “Local branching.” In: Mathematical program-

ming 98.1-3 (2003), pp. 23–47.

[52] Marshall L Fisher. “The Lagrangian relaxation method for solving integer pro-

gramming problems.” In: Management science 27.1 (1981), pp. 1–18.

[53] David García-Heredia, Antonio Alonso-Ayuso, and Elisenda Molina. “A Combi-

natorial model to optimize air traffic flow management problems.” In: Computers

& Operations Research 112 (2019), p. 104768.

https://www.eurocontrol.int/sites/default/files/2019-05/us-europe-comparison-operational-performance-2017.pdf
https://www.eurocontrol.int/sites/default/files/2019-05/us-europe-comparison-operational-performance-2017.pdf
https://www.eurocontrol.int/sites/default/files/2019-05/us-europe-comparison-operational-performance-2017.pdf
https://www.eurocontrol.int/sites/default/files/content/documents/official-documents/reports/challenges-of-growth-2018.pdf
https://www.eurocontrol.int/sites/default/files/content/documents/official-documents/reports/challenges-of-growth-2018.pdf
https://www.eurocontrol.int/sites/default/files/2019-11/nm-annual-network-operations-report-2018-main-report.pdf
https://www.eurocontrol.int/sites/default/files/2019-11/nm-annual-network-operations-report-2018-main-report.pdf
https://www.eurocontrol.int/sites/default/files/2019-06/prr-2018.pdf
https://www.eurocontrol.int/sites/default/files/2019-06/prr-2018.pdf
https://doi.org/10.1007/978-3-319-07124-4_14
https://doi.org/10.1007/978-3-319-07124-4_14
https://doi.org/10.1007/978-3-319-07124-4_14

130 bibliography

[54] David García-Heredia, Elisenda Molina, Manuel Laguna, and Antonio Alonso-

Ayuso. A solution method for the shared Resource Constrained Multi-Shortest Path

Problem. 2020. url: https://e-archivo.uc3m.es/handle/10016/30793.

[55] Carlos García-Martínez, Francisco J. Rodriguez, and Manuel Lozano. “Genetic

Algorithms.” In: Handbook of Heuristics. Ed. by Rafael Martí, Panos M. Parda-

los, and Mauricio G. C. Resende. Cham: Springer International Publishing, 2018,

pp. 431–464. isbn: 978-3-319-07124-4. doi: 10.1007/978-3-319-07124-4_28. url:

https://doi.org/10.1007/978-3-319-07124-4_28.

[56] Renan Garcia. “Resource constrained shortest paths and extensions.” PhD thesis.

Georgia Institute of Technology, 2009.

[57] Stuart Geman and Donald Geman. “Stochastic relaxation, Gibbs distributions,

and the Bayesian restoration of images.” In: IEEE Transactions on pattern analysis

and machine intelligence 6 (1984), pp. 721–741.

[58] Arthur M Geoffrion. “Lagrangean relaxation for integer programming.” In: Ap-

proaches to integer programming. Springer, 1974, pp. 82–114.

[59] Fred W Glover and Gary A Kochenberger. Handbook of metaheuristics. Vol. 57.

Springer Science & Business Media, 2006.

[60] Fred W Glover and Manuel Laguna. Tabu Search. Springer Science & Business

Media, 1998.

[61] Fred Glover. “Heuristics for integer programming using surrogate constraints.”

In: Decision sciences 8.1 (1977), pp. 156–166.

[62] Fred Glover. “Future paths for integer programming and links to ar tifi cial intelli

g en ce.” In: Computers operations research 13.5 (1986), pp. 533–549.

[63] Fred Glover. “Tabu search—part I.” In: ORSA Journal on computing 1.3 (1989),

pp. 190–206.

[64] Fred Glover. “Tabu search—part II.” In: ORSA Journal on computing 2.1 (1990),

pp. 4–32.

[65] Fred Glover. “A template for scatter search and path relinking.” In: Lecture notes

in computer science 1363 (1998), pp. 13–54.

[66] José Fernando Gonçalves, Jorge JM Mendes, and Maurício GC Resende. “A ge-

netic algorithm for the resource constrained multi-project scheduling problem.”

In: European Journal of Operational Research 189.3 (2008), pp. 1171–1190.

https://e-archivo.uc3m.es/handle/10016/30793
https://doi.org/10.1007/978-3-319-07124-4_28
https://doi.org/10.1007/978-3-319-07124-4_28

bibliography 131

[67] F Guerriero and R Musmanno. “Label correcting methods to solve multicriteria

shortest path problems.” In: Journal of optimization theory and applications 111.3

(2001), pp. 589–613.

[68] Monique Guignard. “Lagrangean relaxation.” In: Top 11.2 (2003), pp. 151–200.

[69] Monique Guignard and Siwhan Kim. “Lagrangean decomposition: A model

yielding stronger Lagrangean bounds.” In: Mathematical programming 39.2 (1987),

pp. 215–228.

[70] LLC Gurobi Optimization. Gurobi Optimizer Reference Manual. Accessed on De-

cember 17, 2020. 2020. url: http://www.gurobi.com.

[71] Bruce Hajek. “Cooling schedules for optimal annealing.” In: Mathematics of oper-

ations research 13.2 (1988), pp. 311–329.

[72] Gabriel Y Handler and Israel Zang. “A dual algorithm for the constrained short-

est path problem.” In: Networks 10.4 (1980), pp. 293–309.

[73] Pierre Hansen and Nenad Mladenović. “Variable Neighborhood Search.” In:

Handbook of Heuristics. Ed. by Rafael Martí, Panos M. Pardalos, and Mauricio

G. C. Resende. Cham: Springer International Publishing, 2018, pp. 759–787. isbn:

978-3-319-07124-4. doi: 10.1007/978-3-319-07124-4_19. url: https://doi.

org/10.1007/978-3-319-07124-4_19.

[74] Sönke Hartmann and Dirk Briskorn. “A survey of variants and extensions of the

resource-constrained project scheduling problem.” In: European Journal of opera-

tional research 207.1 (2010), pp. 1–14.

[75] John Henry Holland et al. Adaptation in natural and artificial systems: an introduc-

tory analysis with applications to biology, control, and artificial intelligence. MIT press,

1992.

[76] Markó Horváth and Tamás Kis. “Solving resource constrained shortest path

problems with LP-based methods.” In: Computers & Operations Research 73 (2016),

pp. 150–164.

[77] Frank Hutter, Holger H Hoos, and Thomas Stützle. “Automatic algorithm con-

figuration based on local search.” In: Aaai. Vol. 7. 2007, pp. 1152–1157.

[78] IATA. IATA ECONOMIC BRIEFING. Accessed on December 17, 2020. 2013. url:

https://www.iata.org/en/iata-repository/publications/economic-reports/

inefficiency-in-european-airspace/.

http://www.gurobi.com
https://doi.org/10.1007/978-3-319-07124-4_19
https://doi.org/10.1007/978-3-319-07124-4_19
https://doi.org/10.1007/978-3-319-07124-4_19
https://www.iata.org/en/iata-repository/publications/economic-reports/inefficiency-in-european-airspace/
https://www.iata.org/en/iata-repository/publications/economic-reports/inefficiency-in-european-airspace/

132 bibliography

[79] IATA. Annual Review 2016. Accessed on December 17, 2020. 2016. url: https:

//www.iata.org/about/Documents/iata-annual-review-2016.pdf.

[80] IATA. Tackling the European infrastructure crisis. Accessed on December 17, 2020.

2016. url: http://airlines.iata.org/analysis/tackling- the- european-

infrastructure-crisis.

[81] Nikola Ivanov, Fedja Netjasov, Radosav Jovanović, Stefano Starita, and Arne

Strauss. “Air Traffic Flow Management slot allocation to minimize propagated

delay and improve airport slot adherence.” In: Transportation Research Part A:

Policy and Practice 95 (2017), pp. 183–197.

[82] Sai Prashanth Josyula, Johanna Törnquist Krasemann, and Lars Lundberg. “A

parallel algorithm for train rescheduling.” In: Transportation Research Part C: Emerg-

ing Technologies 95 (2018), pp. 545 –569. issn: 0968-090X. doi: https://doi.org/

10.1016/j.trc.2018.07.003. url: http://www.sciencedirect.com/science/

article/pii/S0968090X18309410.

[83] Radosav Jovanović, Vojin Tošić, Mirjana Čangalović, and Milan Stanojević. “An-

ticipatory modulation of air navigation charges to balance the use of airspace net-

work capacities.” In: Transportation Research Part A: Policy and Practice 61 (2014),

pp. 84–99.

[84] Carolin Kellenbrink and Stefan Helber. “Scheduling resource-constrained projects

with a flexible project structure.” In: European Journal of Operational Research 246.2

(2015), pp. 379–391.

[85] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. “Optimization by simu-

lated annealing.” In: science 220.4598 (1983), pp. 671–680.

[86] Robert Klein. “Project scheduling with time-varying resource constraints.” In:

International Journal of Production Research 38.16 (2000), pp. 3937–3952.

[87] Robert Klein and Armin Scholl. “Computing lower bounds by destructive im-

provement: An application to resource-constrained project scheduling.” In: Euro-

pean Journal of Operational Research 112.2 (1999), pp. 322–346.

[88] Rainer Kolisch and Sönke Hartmann. “Experimental investigation of heuristics

for resource-constrained project scheduling: An update.” In: European journal of

operational research 174.1 (2006), pp. 23–37.

[89] Rainer Kolisch and Rema Padman. “An integrated survey of deterministic project

scheduling.” In: Omega 29.3 (2001), pp. 249–272.

https://www.iata.org/about/Documents/iata-annual-review-2016.pdf
https://www.iata.org/about/Documents/iata-annual-review-2016.pdf
http://airlines.iata.org/analysis/tackling-the-european-infrastructure-crisis
http://airlines.iata.org/analysis/tackling-the-european-infrastructure-crisis
https://doi.org/https://doi.org/10.1016/j.trc.2018.07.003
https://doi.org/https://doi.org/10.1016/j.trc.2018.07.003
http://www.sciencedirect.com/science/article/pii/S0968090X18309410
http://www.sciencedirect.com/science/article/pii/S0968090X18309410

bibliography 133

[90] Doreen Krüger and Armin Scholl. “A heuristic solution framework for the re-

source constrained (multi-) project scheduling problem with sequence-dependent

transfer times.” In: European Journal of Operational Research 197.2 (2009), pp. 492–

508.

[91] Jürgen Kuster, Dietmar Jannach, and Gerhard Friedrich. “Extending the RCPSP

for modeling and solving disruption management problems.” In: Applied Intelli-

gence 31.3 (2009), p. 234.

[92] Manuel Laguna and Rafael Martí. Scatter search: methodology and implementations

in C. Vol. 24. Springer Science & Business Media, 2012.

[93] LocalSolver. LocalSolver Reference Manual. Accessed on December 17, 2020. 2020.

url: https://www.localsolver.com/.

[94] Manuel López-Ibáñez, Thomas Stützle, and Marco Dorigo. “Ant Colony Op-

timization: A Component-Wise Overview.” In: Handbook of Heuristics. Ed. by

Rafael Martí, Panos M. Pardalos, and Mauricio G. C. Resende. Cham: Springer

International Publishing, 2018, pp. 371–407. isbn: 978-3-319-07124-4. doi: 10 .

1007 / 978 - 3 - 319 - 07124 - 4 _ 21. url: https : / / doi . org / 10 . 1007 / 978 - 3 -

319-07124-4_21.

[95] Leonardo Lozano and Andrés L Medaglia. “On an exact method for the con-

strained shortest path problem.” In: Computers & Operations Research 40.1 (2013),

pp. 378–384.

[96] Zhiqiang Lu, Yifei Ren, Lin Wang, and Hongwei Zhu. “A Resource Investment

Problem based on Project Splitting with Time Windows for Aircraft Moving As-

sembly Line.” In: Computers & Industrial Engineering (2019).

[97] Guglielmo Lulli and Amedeo Odoni. “The European air traffic flow management

problem.” In: Transportation Science 41.4 (2007), pp. 431–443.

[98] Rafael Martí, Panos M. Pardalos, and Mauricio G.C. Resende. Handbook of heuris-

tics. Vol. 57. Springer, 2018.

[99] Nenad Mladenović and Pierre Hansen. “Variable neighborhood search.” In: Com-

puters & operations research 24.11 (1997), pp. 1097–1100.

[100] Alejandro Montoya, Christelle Guéret, Jorge E Mendoza, and Juan G Villegas.

“A multi-space sampling heuristic for the green vehicle routing problem.” In:

Transportation Research Part C: Emerging Technologies 70 (2016), pp. 113–128.

https://www.localsolver.com/
https://doi.org/10.1007/978-3-319-07124-4_21
https://doi.org/10.1007/978-3-319-07124-4_21
https://doi.org/10.1007/978-3-319-07124-4_21
https://doi.org/10.1007/978-3-319-07124-4_21

134 bibliography

[101] Alexander G Nikolaev and Sheldon H Jacobson. “Simulated annealing.” In: Hand-

book of metaheuristics. Springer, 2010, pp. 1–39.

[102] OpenMP Architecture Review Board. OpenMP Application Program Interface Ver-

sion 4.5. Accessed on December 17, 2020. 2015. url: https://www.openmp.org/

wp-content/uploads/openmp-4.5.pdf.

[103] Metin Ozgur and Aydan Cavcar. “0–1 integer programming model for procedu-

ral separation of aircraft by ground holding in ATFM.” In: Aerospace science and

technology 33.1 (2014), pp. 1–8.

[104] Michal Pióro, Áron Szentesi, János Harmatos, Alpár Jüttner, Piotr Gajowniczek,

and Stanislaw Kozdrowski. “On open shortest path first related network optimi-

sation problems.” In: Performance evaluation 48.1-4 (2002), pp. 201–223.

[105] Andrea Raith and Matthias Ehrgott. “A comparison of solution strategies for

biobjective shortest path problems.” In: Computers & Operations Research 36.4

(2009), pp. 1299–1331.

[106] Rob Shone, Kevin Glazebrook, and Konstantinos G. Zografos. “Applications of

stochastic modeling in air traffic management: Methods, challenges and oppor-

tunities for solving air traffic problems under uncertainty.” In: European Journal

of Operational Research (2020). issn: 0377-2217. doi: https://doi.org/10.1016/

j.ejor.2020.10.039. url: http://www.sciencedirect.com/science/article/

pii/S0377221720309164.

[107] Kenneth Sörensen and Fred W. Glover. “Metaheuristics.” In: Encyclopedia of Op-

erations Research and Management Science. Ed. by Saul I. Gass and Michael C.

Fu. Boston, MA: Springer US, 2013, pp. 960–970. isbn: 978-1-4419-1153-7. doi:

10.1007/978-1-4419-1153-7_1167. url: https://doi.org/10.1007/978-1-

4419-1153-7_1167.

[108] Túlio AM Toffolo, Haroldo G Santos, Marco AM Carvalho, and Janniele A Soares.

“An integer programming approach to the multimode resource-constrained mul-

tiproject scheduling problem.” In: Journal of Scheduling 19.3 (2016), pp. 295–307.

[109] Johanna Törnquist. “Computer-based decision support for railway traffic schedul-

ing and dispatching: A review of models and algorithms.” In: 5th Workshop on Al-

gorithmic Methods and Models for Optimization of Railways (ATMOS’05). Ed. by Leo

G. Kroon and Rolf H. Möhring. Vol. 2. OpenAccess Series in Informatics (OA-

SIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://doi.org/https://doi.org/10.1016/j.ejor.2020.10.039
https://doi.org/https://doi.org/10.1016/j.ejor.2020.10.039
http://www.sciencedirect.com/science/article/pii/S0377221720309164
http://www.sciencedirect.com/science/article/pii/S0377221720309164
https://doi.org/10.1007/978-1-4419-1153-7_1167
https://doi.org/10.1007/978-1-4419-1153-7_1167
https://doi.org/10.1007/978-1-4419-1153-7_1167

bibliography 135

2006. isbn: 978-3-939897-00-2. doi: 10.4230/OASIcs.ATMOS.2005.659. url: http:

//drops.dagstuhl.de/opus/volltexte/2006/659.

[110] Johanna Törnquist. “Design of an effective algorithm for fast response to the

re-scheduling of railway traffic during disturbances.” In: Transportation Research

Part C: Emerging Technologies 20.1 (2012). Special issue on Optimization in Public

Transport+ISTT2011, pp. 62 –78. issn: 0968-090X.

[111] US Department of Transportation Bureau of Transportation Statistics. Airline

On-Time Performance Data. Accessed on December 17, 2020. url: https://www.

transtats.bts.gov/tables.asp?db_id=120&DB_Name=.

[112] US Department of Transportation Bureau of Transportation Statistics. Aviation

Support Tables. Accessed on December 17, 2020. url: https://www.transtats.

bts.gov/tables.asp?DB_ID=595&DB_Name=&DB_Short_Name=.

[113] P Wei, Y Cao, and D Sun. “Total unimodularity and decomposition method for

large-scale air traffic cell transmission model.” In: Transportation Research Part B:

Methodological 53 (2013), pp. 1–16.

[114] David H Wolpert and William G Macready. “No free lunch theorems for opti-

mization.” In: IEEE transactions on evolutionary computation 1.1 (1997), pp. 67–82.

[115] Mingming Xiao, Kaiquan Cai, and Hussein A Abbass. “Hybridized encoding

for evolutionary multi-objective optimization of air traffic network flow: A case

study on China.” In: Transportation Research Part E: Logistics and Transportation

Review 115 (2018), pp. 35–55.

[116] Jin Y Yen. “Finding the k shortest loopless paths in a network.” In: management

Science 17.11 (1971), pp. 712–716.

[117] Xing Zhao, Peter B Luh, and Jihua Wang. “Surrogate gradient algorithm for

Lagrangian relaxation.” In: Journal of optimization Theory and Applications 100.3

(1999), pp. 699–712.

[118] Xiao-long Zheng and Ling Wang. “A multi-agent optimization algorithm for

resource constrained project scheduling problem.” In: Expert Systems with Appli-

cations 42.15-16 (2015), pp. 6039–6049.

https://doi.org/10.4230/OASIcs.ATMOS.2005.659
http://drops.dagstuhl.de/opus/volltexte/2006/659
http://drops.dagstuhl.de/opus/volltexte/2006/659
https://www.transtats.bts.gov/tables.asp?db_id=120&DB_Name=
https://www.transtats.bts.gov/tables.asp?db_id=120&DB_Name=
https://www.transtats.bts.gov/tables.asp?DB_ID=595&DB_Name=&DB_Short_Name=
https://www.transtats.bts.gov/tables.asp?DB_ID=595&DB_Name=&DB_Short_Name=

	Dedication
	Acknowledgments
	Publications
	Contents
	List of Figures
	List of Tables
	Abstract
	Resumen
	1 Introduction
	2 Air Traffic Flow Management Problem
	2.1 Introduction
	2.2 Literature Review
	2.3 Problem Description
	2.4 Previous Models
	2.4.1 Notation
	2.4.2 ATFMP by nodes
	2.4.3 ATFMRP by nodes
	2.4.4 ATFMRP by arcs

	2.5 New Mathematical Formulation
	2.5.1 Cost analysis in the objective function
	2.5.2 Model extension

	2.6 Alternative Formulation
	2.7 Graph of Conflicts

	3 Shared Resource Constrained Multi-Shortest Path Problem
	3.1 Introduction
	3.2 Problem description
	3.2.1 Notation
	3.2.2 Preliminaries: Shortest Path Problem and Resource Constrained Shortest Path Problem
	3.2.3 Mathematical formulation
	3.2.4 Key features
	3.2.5 Application to project scheduling

	3.3 Solution Methods
	3.3.1 Introduction to heuristic algorithms
	3.3.2 Matheuristic algorithm
	3.3.3 Lagrangian Relaxation

	4 Computational Experience
	4.1 ATFM data sets
	4.1.1 Raw data transformation
	4.1.2 Sectors and route waypoints
	4.1.3 Flight plans
	4.1.4 4D-networks
	4.1.5 Capacity constraints
	4.1.6 Instances dimensions

	4.2 Computational Results
	4.2.1 Integer Programming Results
	4.2.2 Matheuristic and Lagrangian Relaxation Results
	4.2.3 Flight Plans Modifications

	5 Conclusions and Future Research
	Bibliography

